Analiz-11I Final konulariyla ilgili ¢c6ziim 6rnekleri.

1. z=e*Y +In(l+xy) fonksiyonunun birinci ve ikinci mertebeden tiim kismi tiirevlerini bulunuz.

Coziim: Verilmis fonksiyon elemanter fonksiyonlardan cebirsel ve bileske islemleri yardimiyla
olusturulmustur. D(f)= {(X, y) e R* |1+ xy > 0} kiimesinde tanimlidir. Elemanter fonksiyonlarin

tiirev formiillerine ve diferansiyelleme kurallarina gére kismi tiirevlerini bulalim.

y

z =’ 2x+ .z, e’ 2y + :
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y2 y 5 yZ
2! =| e’ 2x+ —— J e 2x2x+2e" " -2 =(4x’ +2)e" - 7
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X2 , X2
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V(x,y)eD(f) igin.
2. z=xye"", x=2uv, y=u’—-V* iken %, a kismi tiirevlerini zincir kuralina gére bulunuz.

Coziim: Ilk énce zincir kuralinm uygulanabilirligini teyit edelim. z = f (X, y) = xye**¥ fonksiyonu
D(f)=R? kiimesinde, X=¢@(u,v)=2uv, y=w(u,Vv)=u’-Vv? fonksiyonlart  ise
D(p) = D(y) =R?* kiimesinde, ayrica z= f(¢(u,Vv),w(u,v)) bileske fonksiyonu V(u,v) € R* igin
tanimhidirlar. V(X,y) € D(f) noktasinda
7 = (xye“y)’x =ye*y + xy(e“y)'X =y +xye™ = y(1+x)e*,

r X+y ! X+y X+y ! _ X+y X+y __ X+y
2, =(xye )y +xy(e )y_ye +xye" = y(1+x)e,
ve her V(uv)eR? icin X =(2uv), =2v, X, =(2uv), =2u, y,=(u? —vz)’u =2u,

y, =(u2 —V? ), =—2v sonlu kismi tiirevleri vardir. O halde bileske fonksiyonunun z/, z, kismi

'

tiirevleri her V(u,v) € R* noktasinda vardir ve bu tiirevler zincir kuralina gére bulunabilir:
2, =2, X, + 2, - Y, = YL+ X)e* 2v + xX(1+ y)e 2u =

2V (2uv +2)(U? —v2)2v+ 2 2uv(l+u? —v)2u =

2V u[(2uv +1)(U? —v2) + 2u? (L+u? —v2)],

2, =2, X +2, Y, = Y[+ X)e" 2u-x(1+y)e 2v =

2V (2uv +2)(U? —v2)2u —ePV T AuvA (L+u? —VP) =

2V 2u[(2uv +2)(U? —v2) — 2V (L+u? —v?)], V(u,v) e R?.



3. 2+72°x+22x°y—2=0 denkleminin, (1,0,1) noktasinin yakin komsulugunda bir z =¢(X,Y)
oz(x,y) oz(x.y)
ax i)

kismi tirevlerini ve bu tiirevlerin

kapali fonksiyonunu tanimladigin1 gosteriniz.

(4,0) noktasinda degerlerini bulunuz.

Coziim: Ik 6nce M,(L0,1) noktasinin yakin komsulugunda kapali fonksiyonun varligi ve
tiirevlenebilirligi hakinda teoremin sartlariin saglandigini kontrol edelim.
F(x,y,2)=2°+2°x+22x’y -2 fonksiyonu D(F)=R? kiimesinde o6zel durumda (1,0,1)
noktasinin  bir R= [1—51,1+ é'l]x[—é'z , 52]><[1—A,1+A] , (6,>0,0,>0, A>0) prizmatik
komsulugunda da tamimli ve siireklidir. F(1,0,1)=1*+1%1+2.1.120-2=0 yani (1,0,1) noktas

denklemi sagliyor. Ayrica

!
X

Fi(xy,2)=(2°+2°x+22x°y -2) =2 +4zxy, F/(x,y, z)=(z3+zzx+22x2y—2)'y =27%?

F/(X,Y,2) =(z3 + 22x+22x2y—2)’Z =32° +22x+2xX’y, V(X,Y,2) eR®

sonlu kismi tirevleri mevcut olup, polinom fonksiyonu olarak R ‘de siireklidirler.
F/(L0,2) =(32% + 22X+ 2X°y )| y=31+2.11+21.0=5%0 dir. Bu durumda teorem geregi
F(x,y,z)=0 denklemi (1,0,1) noktasinin bir yakin komsulugunda z=¢(x,y) kapali
fonksiyonunu tanimlar. Diger bir deyisle en az bir 0 <6 <min(a;,6,) i¢in N, (L, 0) ‘m bir U4(N,)
komsulugunda tanimli, siirekli ve siirekli tiirevlenebilir z=¢(X,y) kapali fonksiyonu vardir. Bu

fonksiyonun kismi tiirevleri V(X, y) eU;(N,) ve F(X,y,z)=0 sartini saglayan z=¢(X,y) igin

oz(x,y)  F/(xV,2) 7% +4zxy
x F'(x,Y,2) T 37 +22X+ 2X°y
a.y) __ R (y.2) =—— 2z — ., (F/(xy,2) %0, V(X,y,2) €eU4(N,))
oy F/(x,y,2) 32° + 22X+ 2X°y
formiilleri ile bulunur. Buradan (1,0) noktasindaki tiirevleri (z = z(1,0) =1 alinmakla)
0z(1,0) 7° +7xy 1 +1.1.0 1
x  3r+2x+2dy|,, 3F+211+21%0 5
6z(1,0) 22x 2.1.12 2
oy  3+2x+adty|,, 3F+211+21%0 5
bulunur.

4. x*+6xy+5y°+2z° =1 denklemiyle verilen yiizeyin P,(1,—11) noktasinda teget diizlemin ve
normalinin denklemlerini bulunuz.

Coziim: Ik o6nce P/(L,-11) noktasinin yiizey iizerinde bulundugunu kontrol edelim.
1? +6.1.(-1)+5(-1)° +1° =1-6+5+1=1 oldugundan bu gegerlidir. Teget diizlemin normal
vektoriinii bulmak i¢in denklemi F(X, Y, z) = x> +6xy +5y? + 22 —1=0 seklinde yazalim ve

F/(X,Y,2) = (x2 +6Xxy +5y? + 2 —1)’X =2x+6y, F(xY,2)= (x2 +6xy +5y° +2° —1),y =6x+10y,
F/(x,y,2)= (X2 +6Xy +5y* +2° —1)'Z =27 kismi tiirevlerini bulahm. Bu tiirevler V(X,Y,z)eR®

noktasinda siireklidir, dolayisiyla P,(1,—11) noktasinda da siireklidir ve bu noktada teget diizlem
vardir. Bu noktada



F/(R)=F@L-1)=(2x+6y) = =21-61=—4,

1,-11)

F/(R)=F/1-11) =(6x+10y)| , =61+10.(-1)=-4,
F(R)=F&-1)= (22)‘(1_11) =2.1=2 buluruz.

Buna gore normal vektor N =—4i— 4] +2K olur. O halde teget diizlemin denklemi

—4(x-1)—-4(y+1)+2(z-1) =0 veya -4x—4y+2z-2=0 yahut 2x+2y—-z+1=0

seklinde bulunur. P,(1,—11) noktasindan gecen normal dogunun denklemi

x-1 y+1 z-1 x-1 y+1 z-1
—4 —4 2 2 2 -1

seklinde yazilir.

5. z=x>+Yy*—3x* +3y? +1 fonksiyonunun yerel ekstremum noktalarin1 ve ekstremum degerlerini
bulunuz.

Coziim: f(x,y)=x>+y®-3x*+3y’+1 polinom fonksiyonu oldugu icin D(f)=R* kiimesinde
tanimlidir, siireklidir ve her (X, y) € R* noktasinda sonlu

!
X

f/(x, y)=(x3+y3—3x2+3y2+1) =3x*-6x, f(x, y):(x3+y3—3x2+3y2+1),y:3y2+6y

f1(xy)=(3x* ~6x) =6x-6, f;(x,y)=f.(xy)=(3x*~6x) =0

y
fr(xy) =(3y2 +6y) , =6y +6

kismi tiirevleri mevcuttur, ayrica bu kismi tiirevler V(X, y) € R? noktasinda siireklidirler. O halde
f/(x,y)=3x*-6x=0
f,/(x,y)=3y*+6y=0
(X, y) € R? noktalaridir. Bu sistemi bilinen yontemlerin biri ile ¢6zelim.

{SXZ -6x=0 {3x(x—2) =0 {X(X—Z) =0 {X:O veyax =2 {x =0veyax=2

= = = = =
3y?+6y=0 (3y(y+2)=0 |y(y+2)=0 [y(y+2)=0 y=0veyay=-2

(0,0),(0,-2),(2,0),(2,-2) kritik noktalarin1 elde ederiz. Bu noktalarin her birinde, ekstremum igin
yeterli sarttan yaralanarak yerel ekstremum degerinin varligini inceleyelim. Bu amagla her kritik

noktada A(X,Y) = f1(x, ) f (6 y) | f7(x, y)]2 =36(x—1)(y+1) diskriminantmin ve f/(X,Y)
(veya f (%, y)) tiirevinin degerlerini dikkate alalim.

(0,0) noktasinda A(0,0)=36(x—-21)(y +1)| 00 = 36.(-1).1=-36<0= yerel ekstremum degeri
yoktur, (0,0) eger noktasidir.

(0,—2) noktasinda A(0,—2) =36(x—-1)(y +1)|(0‘_2) =36.(-1).(-1)=36>0 ve

f, (0,-2) = 6(x —1)| 02 = —6 <0 oldugundan (0,—2) yerel maksimum noktasi,

yerel ekstremum igin aday noktalar { sistemin saglayan stasyoner (duragan)

z..=f(0,-2)= (x3 +y% —3x% +3y? +1)‘ - 0° +(-2)° —3.0° +3(-2)* +1=5 yerel maksimum

(0,
degeridir.
(2,0) noktasinda A(2,0) =36(x—-1)(y +1)|(2’0) =36.1.1=36>0 ve f(2,0)=6(x —1)|(2’0) =6>0

X

oldugundan (2,0) yerel minimum noktasi,
Zp = £(2,0)=(X* +y* —3x* +3y? +1)\ =2°+0°—3.22 +3.0° +1=—3 yerel minimum degeridir.

(2,0)



(2,-2) noktasinda A(2,—2) =36(x—-1)(y +1)| . 36.1.(-1) =—36 < 0 oldugundan ekstremum
degeri yoktur, (2,—2) eger noktasidir.

6. f(X,y)=x*+y>—xy+x+y—4 fonksiyonunun x+y+3=0 sarti altinda yerel ekstremum
noktalarini ve ekstremum degerlerini Lagrange yontemiyile bulunuz.
Coziim: f(X,y)=x*+y*’—xy+x+y—-4 ve ¢(X,y)=x+y+3 fonksiyonlari D(f)=RR?,
D(¢p) = R? kiimesinde tanimls, birinci ve ikinci mertebeden kismi tiirevlere
f/(%Y) :(x2 +yP Xy + X+ y—4),X =2x—y+1, fi(xy)=(2x— y+1)'X =2
f/(x,y) =(x2 +yF =Xy + X+ y—4) ,=2y—x+1, (. y)=fg(x y)=(2x-y+1) =-1,
fy';(x,y)=(2y—x+1)'y=2, (p;(x,y)z(x+y+3)'X:1, go;(x,y):(x+y+3)'y=1,
oL (X, y) = (1)')( =0, ¢L(xy)= (1)’y =0, ¢} (xy)= (1)’y =0 sahiptirler, ayrica bu tiirevler
Y(X, y) € R? noktasinda polinom fonksiyonu olarak siireklidirler.
Lagrange yontemini uygulamak i¢in
F(X,y)=f(X,¥)+Ap(X,y) =X* +y* =Xy + X+ Yy —4+ A(X+y+3) fonksiyonunu tanimlayalim.
F/(X,y)=2x-y+1+1=0
Sarth ekstremum igin gerekli sartlart < F/(X,y) =2y —Xx+1+1=0 yazalim.
o(X,y)=x+y+3=0
Elde edilen sistemin ¢6ziimlerini bulalim.
2X—-y+1+41=0 X+y+2+24=0 24=1 1=1/2
2y —X+1+1=0<+:3y—-3x=0 ody=x <
4 Y 4 {y =x=-3/2
X+y+3=0 X+y+3=0 2X=-3

Burdan 1=1/2 ig¢in (—g,—g) kritik noktasin1 buluruz. Bu, f(x,y) fonksiyonunun verilmis
X+ Y+3=0 dogrusu iizerinde sartli yerel ekstremum noktasi adayidir. Bu noktada sarth ekstremum
degerinin var olup olmadigimi tespit etmek icin yeterli sarttan faydalanalim. Bunun i¢in

F(X,y)=X*+y> =Xy +X+ y—4+%(x+y+3) fonksiyonunun

N w

d?F(x, y) = Fy(x, y)dx* +2F] (x, y)dxdy + F) (x, y)dy*  diferansiyelinin (- —g) noktasindaki

degerinin igaretini, dx ve dy diferansiyellerinin ayn1 noktada yazilmig dgo(—g , —g) =1dx+1dy =0
denklemini  ve (dX)2 +(dy)2 >0 saglayan degerleri icin inceleyelim. Buna gore

R Y)=2x—y+3, F(xy)=2y-x+5, Fi(xy)=2, F(xY)=FL(xy)=-1, F(xy)=2,

2’
" 3 3 _ " 3 _3 _ " _E _§ — 4 _E _E — :
FXX(_E’_E)_Z’ FXV(_E’ E)_FVX( 5 2)— 1, FW( 5 2)—2 dikkate almirsa

sz(%,%)=2dx2—2dxdy+2dy2 bulunur. Burada dx+dy=0 den bulunan dy=-dx ‘i dikkate
. 2 3 3 2 2 2 - .
alirsak dx #0 i¢in d F(—i,—§)=2dx —2dx(—dx) +2dx* =6(dx)" > O elde edilir. O halde yeterli

sarta gore (—g,—g) noktast f(x,y) fonksiyonunun bir sartli yerel minimum noktasi,



— 3 _3) _(y2v2_ _ )‘ _ B 3 -
Zmin_f( o 2)—()( TY —Xy+X+y 4(_3/2'_3/2)—4+4 155 4=-7 =—47 sarth minimum

degeridir.

7. Integralleri hesaplayiniz:

+1-x? r Jeosg
a) Jl.dx1 Jl. ydy b) J/.ngo J.q]rf’sinqudr
0 1-(1-x? 0 0

Céziim: Once i¢, ardindan dis integrali hesaplayarak sonucu bulalim.

1+\A1 X

a) jdxl+ j’x ydy = _[ Ji ;j.{(lﬂ/l_x) —(1—\/1—7)1dx:;j’4\/1—7dx:

=1.1-12 +arcsin1—(0)y1—0% —arcsin 0 =arcsin1= %

1 1
= 2J.\/1—x2dx = 2(% X+/1— X2 +%arcsin x)
0
. X =sint, dx =costdt =l2 -
ikinci yol: I:%J'4\/1 X2 dx —{ } I\/1—3|n2tcostdt:

=0=t=0, x=1=>t=7n/2 0

72 2 7l2 72 72

2j V1-sin tcostdt—zj |cost|costdt—2j costcostdt—zj cos’ tdt = J' (1+coszt)dt—(t+s"”52t

0

I -

0

b) Art arda i¢ ve dis integralleri hesaplayarak

7l2 \W 72 \W 72 6 rzm l;r/2
I do _[ r°sin® pdr = I sin® pdg j r°dr = I singp| = p=x j sin® p(cos® p—0)dg =
0 0 0 0 0 =0 0

zl2

7l2 7l2 7l2 . 3 . 5
% I sin® pcos® god(p—% I sin® pcos® pd singo—% I sin? p(1—sin® p)d singozé{s'”‘/’—s'” ‘/’]
0 0 0

3 5
. 3 . 5
1fsin“z/2 sin ”/2—O+O il 1)1 bulunur.
5 45

0

6 3 6\3 5

Not. Sonuncu integralin hesaplanmas1 asagidaki gibi de yapilabilir

7l2 H

17 . - . sinp=t, dt =cosqpdep

= | sin®p(d—sin“ p)dsing = t?2(1-t? dt_f vr
GI pll-sin"g)dsing Lp=n/2:>t=1,(p=o:>t=o, I =t

3 5
LT 4.0 J(Ll} 1
3 5 613 5) 45

1 11 2 2-x

8. |dx f(x,y)dy+|dx | f(x,y)dy integralinde integralleme sirasim degistiriniz. (Sekil
| g g
0 0 1

0

1

0

¢iziniz)

1 1-1-x? 2 2-x
Coziim: j I f(x,y)dy, I, = j dx I f (x,y)dy ardisik (siral) integrallerini iki katli
0 1 0
integraller seklinde yazahm. Bu amagla her integrale karsilik gelen integralleme bolgesini
belirleyelim ve bolgeleri koordinat diizleminde gosterelim. Sekle gore



D1={(X,y)e}R2 |0<x<1], OSyél—\ll—xz} ve
D, ={(x,y)eR2|ng32, 0< ysZ—x} yazariz. O halde

Fubini teoremine gore
1-+1-x?

I _Idx _[ f(x,y)dy:ﬂf(x,y)dy

II
P — N

dx j f(x )y = [[ £ (x, y)dy yazlabilir
0 D,

P X
y=2-x

D=D1uD2={(x,y)e]R2|O£ y<1 2y-y° SXSZ—y}

ve D, D, bolgeleri sadece ortak sinir noktalaria sahip

olduguna gore iki kath integralin 6zelligi geregi

| =jdxl_ } F(x, y)dy+jdx2r O y)dy =1+ 1, = [] £ o yy+ [[ £ 0 y)dy = [] £ (x vy
0 0 10 D, D, D

Elde edilir. D bolgesi OX ekseni dogrultusunda diizgilin bolgedir. Buna gore sonuncu integrali
ardisik (siral) integrale indirgeyebiliriz

| = Idxl i f(x, y)dy+jdXT f(x,y)dy = ij £ (x,y)dy = idle £(x,y)dy .
2y-y?

9. G bolgesi, x*+y*=1, (x>0, y>0) egrisi ve koordinat eksenleriyle smnirlandigina gore

” x?y?\J1- x> —y*dxdy integralini hesaplaymiz. (Sekil ¢iziniz)
G

Coziim: Koordinat diizleminde, integralleme bolgesini sinirlayan
egrileri ¢izerek bolgeyi

= {(X, y)eR?|0<x<1, 0<y<1-x° } gibi tanimlayalim.

f(x,y)=xy*/1-x*—y* fonksiyonu bu bolgede tanimli ve siirekli

1
y=(1-x°)°

oldugundan Fubini teoremine gore iki katli integral ardisik - X
integrallere indirgenebilir ve
1 e o
=J‘Ix2y2«/1—x3—y3dxdy:'[dx I x2y? J1-x° dy——fJ‘ dx I «/1—x3—y3d(1—x3—y3)=
G 0 0 0
1 P oy % ]2 _ 2 % 2 _
§_[ 1 x—y) = 9J'[O ( ) x“dx 5_[1 X dx
0 y=0 0
2 _y3V2 / / 4
_270(1 X) 27 5 N 135(0 )‘135
gibi hesaplanir.

10. G bolgesi, (X2 +y° )2 =x*—y?, (x=0) lemniskat yapragiyla smrlandigmma gore
ﬂ Xy/X* + y?dxdy integralini kutupsal koordinatlara gegerek hesaplayiniz. (Sekil giziniz)
G



Coziim: Lemniskat egrisinin koordinat eksenlerine ve

orijine nazaran simetrik oldugunu goriiriiz. Bu egrisinin s A e 1
verilmis denklemini kutupsal koordinatlarla yazalim. ., % r=(cos2P)?2
Buna gore 1 el 1
2 a2 2ain2 AV v2 Arc2 2 cin2 —8 - o
(r*cos® p+17sin” )" =r’cos’ p—r’sin’ o veya 3 e
. \- - a"' : *
r*=r’cos2p vyahut r=,/cos2p elde edreiz. Bu

denklemi dikkate alarak egriyi ¢izelim. Egrinin siirladigt
sag yar1 dlizlemde bulunan bolgeyi kutupsal koordinatlarla

= {(I’, ) eR?| —% <p< %, 0<r<,/cos 2(p} seklinde tanimlayalim. O halde degisken

degistirme kurali geregi
J.J‘ Xy X2 + y2dxdy = H I cos go\/r2 cos’ p+r’sin® p.rdrde yazabiliriz. Bu integrali Fubini teoremine
G G*

gore ardisik integrallere indirgeyerek hesaplayim:
| = J‘jquxz +y*dxdy = H rcos<o\/r2 cos’ p+r?sin’ @ -rdrde = ” I’COS{D\/I‘Z(COSZ @ +sin® ) -rdrdg =
* G*

JcosZ(p ld cos2¢p

HI’COS(p\/_ rdrde = Hr cospdrde = Id(p I r* cospdr = _[ cospdo j ridr =
—rl4 0 —rl4 0
/4 Joos2¢ xl4 4|r=eos2 L 7l4
34y _ r _ 2 4

I cospde I ridr = j cosgdo| ° =2 I cos ¢(cos’ 290 )dgo—f I oS oS 2pd g =
—l4 0 —zl4 = —l4 —zl4
1 7l4 1 zl4 1 ld
3 | cos*2pdsing =7 [ (1-2sin*g)’dsing =7 [ (L-4sin’ p+4sin‘ p)dsing =
~rl4 —l4 —l4

7l4 T .5 T
1 air . 4sinp  4dsin’p _1 4sin’ Zf’sm n 7ZL4sm ( 7] asin (_Zj _
4(Sln(0 3 5 j_ /4—2 sin ———+— sm( 4/ 3 c =

2

4 5 2 38 532 2 3 10 15 -

12[sinz 4S|r;4l4sm 1 2([ 4242 44\/_J l(\/i JE+J§]:2\/§

2
11. y:% egri ve y=2X, y=4, (y24) dogrulartyla sinirlanmig D seklinin alanmi iki kath

integral yardimiyla bulunuz. (Sekil ¢iziniz)
Coziim: A -

X
Once D seklinin smir egrilerini koordinat diizleminde 2
cizerek bolgeyr belirleyelim. Sekle gore bolgeyi

:{(x,y)eR2|4£y£8, %SXS@} 311 - St EARR—

tanimlayalim. O halde diizlemsel seklin alani
formiiliine ve Fubini teoremine gore

S(D) = ”1 dxdy = jdyjdx Idy(XIX y,z)—

4 yl2

j:[ﬂ—;jdy=ﬁ£ﬁdy—;£ydy:(2f y¥2 _iyz) _




22 .83/2 —382 B 2\2 .43/2 +1
3 4 3 4

S(D)= 21022

\/_16\/_ 16_ﬂ 404, 162 28162

2 - -
3 3 3 gibi bulunur.

4

12. z=xX*+xy+Yy*+2, xX*+y* =1, z=1 yiizeylerinin smirladig1 cismin hacmini iki katli integral
yardimiyla bulunuz. (Sekil ¢iziniz)

Coziim: Cismi sinirlayan yiizeyleri ve cismin OXy koordinat diizlemi tizerindeki izdiisiimii olan D
bolgesini koordinat diizleminde ¢izelim. Sekle gore

D= {(x, y) e R? | x* +y? 31} ve kutupsal koordinatlara Zz=f(x,y)

gegerken goriintiisiiniin
= {(r, p)eR*|0<p<27, O<T Sl} oldugu goriiliir.
Hacim formiiliine gore cismin hacmi

Y, :H[f(x, y)—l]dxdy:J‘J.(x2+xy+ y2+2—1)dxdy: =1

ﬂ X2+ Xy +y? +1)dxdy =

D

H

r* +1? cos gsin g -+1)rdrde =

(

j(rzcos @+1° cospsinp+1r’sin” p-+1)rdrde =
(
(

Y

s -

ﬂ r*+1° cospsing+r)drde =
5 r=1
r r : r
J.dgo(4+4COSgosm(0+2J =
0 r=0
2z R ) (2 =l 2 14
Idga 4+ Cosgsing+-- I S COS(pSIn¢+——O dp= j( +Z sm2(p)d(p_
0 r=0 0
2r

3p  cos2¢p _32z _cos4r 30 cos20 3z _ 1 1 37 3 L. s\, 3w, 3 :
(T % )0 == 6 27 16 2 1t- 2 bulunur. Cismin hacm|V—7br dir.

13. y=x* parabolii ve y=0, x=2 dogrularryla smirlanmis G homojen diizlemsel seklinin
(,o(x,y)=1) koordinat eksenlerine gore statik momentlerini ve agirlik merkezini bulunuz. (Sekil
¢iziniz)

Coziim: G seklini sinirlayan egrileri  koordinat  diizleminde cizelim  ve
= {(X, y)eR?|0<x<2, 0<y< X2} bolgesini tanimlayalim. Kiitlenin G bolgesinde dagilim

yogunlugu p(X,Yy)=1 fonksiyonu bu boélgede siirekli oldugundan G seklinin kiitlesi ve eksenlere
nazaran statik momentleri

m=[[ p(x y)-dxdy, M, =[] p(x y)y-dxdy,

M, =Hp(x, y)x - dxdy

formiilleri araciligiyla bulunabilir. O halde

m= ”p(x y)-dxdy = ﬂdxdy jdledy _[( )dx—
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X de—;.:[(x“oz)dx—;ix“dx—i‘oo -

=] sy [ oy o o= -
& G 0 0 0

y=0

22 0 2° 16
10 10 10 5
2

2 X 2 , 2 2 4
M, =”,0(X. y)X-dxdy=”xdxdy=Idxj xdy=jx(y|§_0)dx=jx(x2 —O)dx:jx3dx="74 =27=4
G G 0 0 0 0 0 0
. .. . _My 4 3 _ My 16/5 6
bulunur. Sonugta seklin agirlik merkezinin koordinatlar X, = =ga=y Ye= o =gz -5 Ve

agirlik merkezi M, (E’ Ej bulunur.



