CHAPTER 15 MULTIPLE INTEGRALS

15.1 DOUBLE AND ITERATED INTEGRALS OVER RECTANGLES
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j:fjl(x—y)dydx:j: [xy — 1y, dx=j:2x dx = [x2)2 =4
[y Dady = [ S +yx+x} dy= [ @y+2)dy=[y?+2y]" =1
JL (= axay= [T =y = [ (- 5 )av= [ - %] =3
[a-yyayax= [ {4y—y;]02dx: [Tsax =[x} =16

ff (x2y — 2xy) dydx_f\[;—xy]Ogdxzﬁ3(4x—2x2)dx:{2)(2_27*3]2:0

Y12 4 ¢ 12 83214 92
ff (5 + Vo) dxdy = [ (57 +xy/5] dy = [ (4 +4y2)dy = [y + 377} = %

1 1 1 1
) 2 dxdy = [+ xy[lhdy = [ Inf1 +yldy = [yln|l +y| —y +In[1 +y|}} =202~ 1

fln2f1n5e2x+y dv dx = flnz[eszry]lns dx — fan(Sezx _ e2x+1) dx = [iezx _ 1e2x+1]1n2 _ 3(5 — e)
0 yax=J, 1 —Jo o ? °

1 2 1 1
j;flxye" dydx:j; [%xyze"]?dx:‘ﬁ)%xexdx: [%xe"—%ex]é =3

f f ysmxdxdy—f [~y cosx];/ dy:ijdy:[%yz]:zg

2w ™ 2 2
fw j;(sinx—i—cosy)dxdy:j; [—cosx + xcosy|; dy—j; (2 +mcosy)dy = [2y + 7siny]”"

1 2 1 1
J[ 6y —2x)da= [ [(6y> —2x)dydx = [ [2y* —2xylidx = [ (16 - 4x)dx = [16 x — 2%,
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[ fan= [0 ayan = [[[-6] ax= [lperax= (5], -4
ff XycosydA:fj]j:xycosydydx:fj][xysiny+xcosy]gdx=fj](—2x)dx: [_X2]11
R

. 0 & . 0 .
ff ysin(x +y)dA = fqﬁ ysin(x +y) dydx = f [—ycos(x+y) + sin(x + y)]; dx
g ; -

0
= fi_(sin(x + ) — mweos(x + m) — sinx)dx = [—cos(x + 7) — wsin(x + 7) + cos x|’ =4
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882  Chapter 15 Multiple Integrals

In2 pln2 In2 In2
17. fRf e VdA = j; j; e Vdydx = j; [—e* Y0 dx = j; (—e* 2 eX)dx = [—e* " 4]t =1

2 1 2 1 2
18. ffoyeXysz:j;j; xyeXyz dydx:fo {%exyz}odx:ﬁ(%ex—%) dx = [%ex—%x]z:%(ez—3)
1 1
19. szdA [ 2 ayax= [ L&Yiw] dx= [ do=20nx2 + 1)) =212
1 1 1 1
20. fRf xzyz%dA:j;j; (xy)y2+1 dxdy:‘/;[tan’l(xy)](]) dy:j;tan’lydy: [ytan’ly—%ln|l+y2|}; :g—%ln2

2 2 2 2
ot [ Layax=[Tan2—mDdx=@n2) [ Ldx=(n2y
1 T 1 1
22. foj; ycosxydxdy:j; [sinxy]gdy:f;sinﬂydy:P%coswy]é:f%(flfl):%

1 1 1 1
23. V= fRf f(x,y)dA = f,lf,l(x2+y2) dydx = fil[xzy—l— %y3] 1_] dx = f71(2x2+ %) dx = [%xz’—l— %x] 1_] :%

24, V:fRff(x,y)dA:f()zj;z(l6—x2,y2)dydx:foz[16y—x2y7%y3]zdxzﬁz(%8—2x2)dx: [8x— 25

— 160
-3

25. V= fffxy dA = ff —X—Yy dydx—j;l[2y—xy—%yz];dx:‘/;l(%—x)dx:[%x—%xz]ézl
26. V= fffxy dA = ffo dydx—f:[y;]de:j:ldx:[x]3:4

27. V= fRf f(x,y)dA = j:/Z‘/:MZ sinxcosydydx = ‘/;/2[2 smxsmy f (fsmx) {—\/Ecosx} 2/2
-2

1 2 1 1
28. V:fRff(x,y)dA:fofo(4—y2)dydx:f0 [4y—_§y3]§dx:fo(13—6)dx: [lox] 2 = 16

15.2 DOUBLE INTEGRALS OVER GENERAL REGIONS
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47. forfstmTy dydx:f(ffoysmTy dXdy:j:Sinydy:2 A

Ty (7, )

48. f:ijyz sin xy dy dx = J:LYZyQ sin xy dx dy

2 2
= fo [—2y cos xy|; dy = fo (—2y cos y* +2y) dy
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— [ =T —8x16) dx = [ A = I —axt 4 16x] L, = (- T4 12) — (% —64) =
2 pVa—x? 2 Va—x2 2
60. V= [ [ G-wdyax= [[y-5] " a= [[va—e - (57)] ax
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= 2 [71n |sec X + tan x| —l—secxtanx]g/3
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-3 -3

69.

1 pi/1-x2
70. fflffum Qy + 1) dydx =

71.

fl‘xﬁlx% dydx:ﬁx[lz—g]:xdx

1/ (1-x

f,]l [y* +y]

= 4blin%7 [sin~'b — 0] = 27

—1/(1—

I etraxay =2 [ (1) (i

lim tan"'b — tan10) = (2m) (5) = *

:27r(
b

— 00

- (—1—%)]dx:2f12(1+%) dx =2[x +Inx]7
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72. f: f:xe’("+2y> dxdy = j;ooe’zy lim [—xe™ —e*];dy = j;me’zy lim (—be®—e™*+1)dy

73.

W

7 [y da s [FG D +EG D+ D+ )] = £ @+31+33+35) = 12

75.

76.

77.

78.

79.
80.

81.
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= f c
0

b— oo

wdy = % 11rn (—e™®+1)=:3

JJ oy dAm 51 (=3.0) + 0.0+ 5£(5.0) =5 () + 5 (0+3) = —%

The ray 6 = ¢ meets the circle x2 + y? = 4 at the point (\@, 1) = the ray is represented by the line y =

V3 VA V3 N
fRff(x,y)dA:fO 3[)(/\4/3 \/4—x2dydx=‘f; 3[(4—){2)—%\/4—)(2} dx = [4X—%3+(4gi%

LI

=6 hm f —— —=)dx=6 hm [ln(x—l)—lnx}§:6blim [In(b—1)—Inb—1In1+1n2]
— 00
:6[b15n00 1n(1—%)+ln2}:61n2

1 2—-x 1 2—x
V:j;fx (x* +y?) dydx:f;) {x2y+y§3] dx
: 7x3 @—x?* 2x3 7x* @-x? !
- o[2x2_T+T]dx:{T___ 12}0

(G- f-h) - 0-0-19) =

1 . 0o 3(y_1)1 37 2 . 0o
(x2—x) (y—1)2/3 dde - j; |: (x2—x) :|0 dx = .j; (xzfx x(x 1)

f(tan X — tan~ de—ff 1+y dydx—ffy/ dxdy—l—f f/ Tz dxdy

=/

= (5

)~
=2tan 27 —2tan"' 2 — 5 In(1 4 4n?) + 113

To maximize the integral, we want the domain to include all points where the integrand is positive and to

1Jyd —|—f27 ) l)[ln(l—{—y)] [2 tan! y—i—ﬂln(l—i—y)]2

1+y H—y
)1n5+2tan127r—gln( +4m?) —2tan' 24 ;- In'5

3/2
)

exclude all points where the integrand is negative. These criteria are met by the points (X, y) such that

4 —x? —2y>  0Oorx?+2y? <4, which is the ellipse x? + 2y? = 4 together with its interior.

To minimize the integral, we want the domain to include all points where the integrand is negative and to

exclude all points where the integrand is positive. These criteria are met by the points (x, y) such that

X2_|_y2

No, it is not possible. By Fubini's theorem, the two orders of integration must give the same result.

—9 < 0orx?+y? <9, which is the closed disk of radius 3 centered at the origin.
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Section 15.2 Double Integrals Over General Regions

82. One way would be to partition R into two triangles with the a
line y = 1. The integral of f over R could then be written
as a sum of integrals that could be evaluated by integrating g

first with respect to x and then with respect to y:

fRf f(x,y) dA

L r2-(y/2) 2 r2-(y/2)
= J ) feoydxdy + [0 fxy) dxdy.

Partitioning R with the line x = 1 would let us write the

1.2

Re=2-y/2

integral of f over R as a sum of iterated integrals with
order dy dx.

83. [ [levraxay= [ [leveraxdy= [ e ( [l dx> dy = ( [e

dx> < [l dy)

oL, \? I I
= ( fibe*“ dx) = (2 fo e dx) =4 ( fo e dx) ; taking limits as b — oo gives the stated result.

84. ffo(y s dydx = ffo(y s dxdy = fw 1)23{%3];@:%]03#

85-88. Example CAS commands:
Maple:
f:=(xy) > 1/xly;
ql = Int( Int( f(x,y), y=1..x ), x=1..3);
evalf( ql );
value( ql );
evalf( value(ql) );

89-94. Example CAS commands:

Maple:
f:=(xy) > exp(x"2);
c,d:=0,1;
gl =y ->2%y;
g2 =y ->4;
g5 := Int( Int( f(x,y), x=g1(y)..g2(y) ), y=c..d );
value( g5 );

plot3d( 0, x=g1(y)..g2(y), y=c..d, color=pink, style=patchnogrid, axes=boxed,

scaling=constrained, title="#89 (Section 15.2)" );
15 := Int( Int( f(x,y), y=0..x/2 ), x=0..2 ) + Int( Int( f(x,y), y=0..1), x=2..4);
value( r5);
value( g5-15 );

85-94. Example CAS commands:
Mathematica: (functions and bounds will vary)

You can integrate using the built-in integral signs or with the command Integrate. In the Integrate command, the
integration begins with the variable on the right. (In this case, y going from 1 to x).

b
%bl. 1*\/; - )’3 + 3blin}+ j; ﬁ - bhrr}* [(y_1)1/3]2+bli>n%+ [(y— 1)1/3]2
- [ lim  (b— 1)/3 7(71)1/3} - [ lim (b 1) f(2)1/3] —0+1)— (of \‘/E) —1++/2

orientation=[-90,0],
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894  Chapter 15 Multiple Integrals

Clear[x, y, f]

flx_ y_I:=1/(xy)

Integrate[f[Xx, y], {x, 1, 3}, {y, 1, x}]
To reverse the order of integration, it is best to first plot the region over which the integration extends. This can be done
with ImplicitPlot and all bounds involving both x and y can be plotted. A graphics package must be loaded. Remember to
use the double equal sign for the equations of the bounding curves.

Clear[x, y, f]

<<Graphics ImplicitPlot®

ImplicitPlot[ {x==2y, x==4, y==0, y==1},{x, 0, 4.1}, {y, 0, 1.1}];

flx_, y_l:=Exp[x*]

Integrate[f[X, y], {x, 0, 2}, {y, 0, x/2}] + Integrate[f[x, y], {x, 2, 4}, {y, 0, 1}]
To get a numerical value for the result, use the numerical integrator, NIntegrate. Verify that this equals the original.

Integrate[f[x, y], {x, 0, 2}, {y, 0, x/2}] 4+ NIntegrate[f[x, y], {x, 2,4}, {y, 0, 1}]

Nlntegrate[f[Xx, y], {y, 0, 1},{x, 2y, 4}]
Another way to show a region is with the FilledPlot command. This assumes that functions are given as y = f(x).

Clear([x, y, f]

<<GraphicsFilledPlot®

FilledPlot[{x2, 9},{x, 0,3}, AxesLabels — {x, vil;

f[x_, y_]:= x Cos[y?]

Integrate[f[x, y], {y, 0, 9}, {x, 0, Sqrt[y]}]

85. [ [ L dydx ~0.603 86. [ [l dydx ~ 0.558

L el 1 pVi-x?
87. J. [ tan~'xy dydx ~ 0.233 88. [ [ T3/Tx —yldydx ~3.142

89. Evaluate the integrals: The following graph was generated using
Ll Mathematica.
j; X j; ye dx dy

2 X2 4 1 2
:fofo e dydx+f2foe* dy dx 1y
= 1Lt — 2 /merfi(2) 4 2. /7 erfi(4))
~ 1.1494 x 10°

0.8

0.6

0.4
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90. Evaluate the integrals:

3 ?x cos(y?)dydx = ’ Vryx cos(y?)dx dy
\f() x2 0Jo

= 6D~ _0,157472

91. Evaluate the integrals:

2,42y 8 pUx
fo fy (x%y — xy*)dxdy = fo fm(xzy — xy’)dy dx

67,520

92. Evaluate the integrals:

’ 47yze"y dxdy = ’ me"y dy dx
S, .
~ 20.5648

The following graph was generated using
Mathematica.

0.5 1 1.5 2 2.5 3

The following graph was generated using
Mathematica.

Y
2t

1.5

0.5

The following graph was generated using
Mathematica.

b 4
2

1.5

0.5
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93. Evaluate the integrals:
2 x? 1
]:.J; ;I§ d)’dX
1 2 4 2
_ 1 1
= o i axay+ [ s axay

—1+1n(%) ~ 0.909543

94. Evaluate the integrals:

f:f;\/#—yzdxdy:flsfl%\/#—yzdydx
~ 0.866649

15.3 AREA BY DOUBLE INTEGRATION

2

L = [fe-na= [x-y] =

orﬁzf%ydxdy:f(2(2—y)dy:2
0 0

2. j:f;dydx - foz(4 —2x) dx = [4x — X2}z — 4,

0rf4fy/2dxdy:f4§dy:4
0 0 0

Copyright © 2010 Pearson Education Inc.

The following graph was generated using
Mathematica.
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2 py-y? 2 512
a [L [ axay= [Jay -y ay= [y~ ¥]
— 4

=438
=4-3=3

5. folnzfoexdde: folnzex dx=[e] =2-1=1

e 2Ilnx e
6. flf]nx dydx:fllnXdX:[Xth—x]T
=k—-e)-0-DH=1

| p2y—y? .
7. j;j;zyydxdy:j;(zy_z}ﬂ)dy:[yQ_%yg](l)
1

3

8. f,llf;; dxdy = f,ll(y2 —1-2y*+2)dy

= [0-yay=[y-¥] 1_1 =¢

9. fozij] dxdy = foz x]2dy
2

= J, 2y)dy = [’y = 4

2 Iny 2 In
0. [ [ 1dxay = [P dy
2 2
— 22— 1

2

1

Section 15.3 Area by Double Integration

y
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898  Chapter 15 Multiple Integrals

[y [0 vayaxt [ [0 1ayax )
= f 2dx+f x/2 *dx IR y=2vorx=dy

—f dx—l—f (3——x)dx Py IO

2
= [3xy + [Bx— 3¢ =3

12. flfﬁldydx+fl4fx\ildydx y

= f \/;dx—l—f4 y]ﬁde

1

_f f+xdx+f x—x—|—2)d

= [+ B+ [0 - 3 = &

=36-3°=12 (2.
X
0 12
NOT TO SCALE
o } 2 3.2 1.3]3 4
14 fof dydx—fo(Sx—x)dx:[ix—gx]O )
by 9
-2 -9= 2
y=-x°
N y =2X =X
N 4
A x

15. f a [ dyax

/4
= J, (cosx —sinx)dx = [sin x + cos x|

= (L+¥)-0+n=v2-1 y=sinz

/4

6. [ axay = [ly+2-yay =[5 +2y-%] }
=(2+4-5)-(G-2+3)=5-3=3 ‘e

NNNAN
NN X
N
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17. fjf:xxdydx +j:f:/:dydx
= [Ca+wdc+ [(1-3) de

[X“ﬂiﬁ[ "12=—(—1+%)+(2—1)=3

2

— x__I

18, 7 dydx +f:f0ﬁdydx
=f02(4—x2)dx +ﬁ4x1/2dx
[ox= 3]0+ B = (8- 9) 4 4 -

32

3

3

Section 15.3 Area by Double Integration 899

y

“1,2,]
=1-
y=-2x 4 *
1 1
©,0 2 *
@-1
_x
Y 72
y
4 2
y=x-4

19. (a) average = % j:‘]:sin(x—f—y)dydx: 4 j;ﬁ[—cos(x—l-)/)]gdx: 4 j:[—cos(x+7r)+cos x] dx
= L [=sin(x + 7) + sin x]] = & [(— sin 27 + sin ) — (— sin 7 + sin 0)] = 0
T /2 T T
(b) average:@ﬁfn sin(x+y)dydx:%f0 [*COS(X+y)}7oT/2dXz%j; [fcos(x+g)+cosx] dx
2
=% [—sin(x+ %) +sinx]; = Z[(—sin ¥ +sin7) — (—sin 5 +sin0)] = %
1 pl Ir. 971 1
_ _ xy _ _1_ (95
20. average value over the square = j;j;xy dydxfj; [T]OdX* Ogdxf 7 = 0.25;
. 3 1 pVi-x2 4 1 xy? 1—x?
average value over the quarter circle = 6] j; j; xy dydx = ~ j; [TL dx
1 1
=2 fo (x—x%)dx =2 {% — ’ﬂ = s~ 0.159. The average value over the square is larger.
1 h~h_1f2f22 2dd_1f22 y32d_1f222 8) dx — 1 [ w]? s
. average height = 7 | 0(x +y°) dydx = ; XY+ S Jx=13 O(X +8 =1 |5+% ,=3
1 2In2 2In2 1 1 2In2 In 2In2
22 average = W \/;nZ In2 E dde = W -[l‘nZ |:Ty:| In2 dx
. 1 2In2 1 o 1 2ln2dX . 1 2In2
= oy [ tn2+4hmh2-nh2dx= (%) [ % = () Inx]"
=(75)(In2+Inn2—-Inln2) =1
> 10,000 _ oy [P o [0 _ax  dx
3. [ [ 0 dydx = 10,000 (1 —e ) - = 10.000(1 —e )[ffs S, + [ 1%}
=10,000(1 —e?) [-2In (1 - 3)]". +10,000(1 —e?) 2In (1 +3)]}
=10,000(1 —e72) [2In (1 + 3)] + 10,000 (1 —e~2) [2In (1 + 3)] = 40,000 (1 — e~2) In (}) ~ 43,329
1 2y—y? 1 2 1 1
24, fofy 100(y + 1) dxdy = [ [100(y + Dx]2 * dy = [ 100y + 1) (2y —2y2) dy = 200 [ (y —y*) dy

¥

, 1
=200[% —¥| =00 (}) =50
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900  Chapter 15 Multiple Integrals

25. Let (x;,y;) be the location of the weather station in county i fori = 1,... ,254. The average temperature
254
> Ty AiA

in Texas at time ty is approximately '*'f , where T(x;, y;) is the temperature at time t, at the

weather station in county i, A;jA is the area of county i, and A is the area of Texas.

b i) b b
26. Lety = f(x) be a nonnegative, continuous function on [a, b], then A = [ [dA = f j; dydx = f [y]o dx = f f(x) dx
R a a a
15.4 DOUBLE INTEGRALS IN POLAR FORM
L 24y’ =9=2r=9=7<60<2r,0<r<9

2. ¥4y =P=r=1, 4y =4#=1r=4=-5<0<5,1<r<4

SE

3. y:xéé):%,y:—xﬁﬂz%,yzl#rzcso@é%§9§¥,0§r§csc€
4, x:lér:secﬁ,y:ﬁxé@z%éogegg,ogrgseCQ

5. x2—|—y2:12:>r:1,x:2\/§:>r:2\/§secﬂ,y:2:>r:20309;2\/55609:20509:>0:%
=0<0< ¢, 1<r<2y3sech; g <0<7,1<r<2v3csc

6. x2+y2:22:>r:2,x:1:>r:secﬂ;2:seCQ:>9:%0r6’z—§:>—§§0§%,sec@§r§2
7. x2+y?=2x=>r=2cos = -5 <H<37,0<r<2cosh

8. X>’+y?=2y=>r=2sin0=0<0<m0<r<2sinf

fjlﬁ)mdydx:ﬂ:ﬁ)lrdrdﬂz%f;dgzg
10. fol j;m (x2 +y?) dxdy:j;mj;l B drd — % j;m a0

1. fozfom (x* +y?) dxdy:foﬁ/zfoer drd0:4j:/2d9:27r

b

a Val—x2 T [a T
2 [0 Cayax= [T [T rarao = 2 [T a0 = ra?
6 ry /2 6cesch /2 /2
13. j;j;xdxdy:f_ﬂj; 12 cos 0 drdf = 72 -[—./4 cot § csc® 6 df = —36 [cot* ], = 36
14. f:j:ydydx = j;meQSMrQ sin 6 drdf = % j:mtanﬁsecQHdQ =3
15. fl\/gflx dydx = f;? CSC\/jgecgrdrdﬁ = f;?(%seCZQ— Lesc?) dg = [3tan 6 + Lcot 6] ;;: =2-./3
16. f;f;m dydx — f;fj;zcswrdrw: S ese0 —2)d0 = [2cotd — 46] =2~ %
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Section 15.4 Double Integrals in Polar Form

7 ayan= [ 2w =2 [ [0 - ) aran=2 [T (- n2) a0

=10 —-In2)r

18. ffF l+x+y>dydx—4f A s drd9—4f

Aalldo=2 [Tao=x

2 /(272 —y? T3 /2 rln2 . /2 -
19. j; j; edexdy:f0 fo re drdH:J; (2ln2-1)dd=35(2In2-1)

20ffly

21.

—

/4

2. f Ik e . zdydx_f”“j;:je r4rdrd9—f/4[

[ 0+ —sm2971ta 0]”425

23. j:j;m xydydx or

folfoﬂ xydxdy

1 /3y
24. fl/zfﬂxdxdyor

\[0\/3/2]\;@ xdde+f\/\/;/2];l/\/§Xdydx

2 prx
25. j;j; y?(x? +y*)dy dx or

N f; y*(x* +y?) dx dy

(x? +y? +1)dxdy—4f”/2f

/2
24 rdrdd =2 (Ind—1)d6=n(n4 1)

IV VT kkay) dydx—f’ﬂf (reost -+ 2rsing) rdrad = [ [§0089+%Sin9]fd9

= " (2\[00594- \[sme)dﬁ— {zfsm& \[cosﬁ}lzzw

/4

#]?eosedez _ (™ (3 cos? 8 — g sec? §) df

1 y=q1-x% or ~’C=\]l—yz

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
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3 4
26. j;j; (x* +y2)’ dydx or v
a3 3 " y=4
j;j;) (x* +y*) dxdy .
2 x=3
1
X
1 2
7/2 (2\/2—sin20 /2
27. [ rdrdd =2 [ (2 sin26) df = 2 — 1)
/2 1+cosf /2
28. Azzj; fl rdrdezj; (2 cos 0 + cos®§) df = 2£7
w/6 12 cos 36 /6
20. A=2 [ ["" rardo =144 [ cos?30 d9 = 121
2 40/3 27
30. A= [ rdrag =38 [To2d0= 5

31.

32. A

33.

34.

35.

36.

37.

38.

39.

40.

A:‘/’:r/Zj;lesingrdrde: % ‘[()W/Q(%—f—zslne—%) de: 3%_’_1

—a [T rardo =2 [(3—2c0s 0+ 252y a0 = ¥ — 4

average = -5 j:ﬂj: rva2 —r2drdf = % j:/za‘a‘ do =2
T/2 ra /2
average:%j; j;errdH:S;‘?j; a®dp = 2
Lo 2 2
average = —- f—af—\/ﬁ mdydx— wa2f f r2drdf = 2 3 f dG— 2

averagezlff (1 —x)? +y*]dydx = 2 f f (1 — 1 cos 0)> +r? sin? 0] r drdd

f f 2rzcose+r)drd9:%j;w(%—ch’sa)dﬁ——[

0 2

]27_3

fo%f.ﬁ( Z)Ydrdo—f f 21nrdrd9—2f [rinr —r; d"—zf Vel(z +1]d6=2m(2-\/e)
fof( )drd@-ff

m/2 [ l4cos /2

j: r2c039drd0:3f0 (3 cos? 0 + 3 cos® O + cos? ) df
/2
0

27 aye 2
= [ lno?);do= [ do =2x

<

Il
— N
c>°|<n> b

1% + sin 260 + 3 sin 6 — sin® + S2H] 7 = 4 4 7

/4 V2 cos 20 /4
v=4["[ V2 2drdd =4 [7 2~ 2cos 2002 — 257 dg
- —2“;/5 — 2 fm( —cos?6) sin 0 df = 2”‘/— 2 {C"S”"’ cos 9] T —6”ﬁ+‘;°ﬁ‘64
0

3 T3 T3
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Section 15.4 Double Integrals in Polar Form 903

41. (a) P = f f (< +y) dxdy_fﬁﬂf ( )rdrdﬁzﬁ)ﬂ/z[blimm j;bre‘rzdr] do

/2 T s r \/;
=—%j; ble (eb—l)dezlfo =1 = 1=

o]

(b) 11m \/— dt \/— f (%) (@) = 1, from part (a)

42, f f 1+x2+y dxdy_f’/zf 1+ drdﬂ—% ll)moof 1+r~ ri%bli»moo [7ﬁ]g

:%blimoo (1_ l+b2):4
3. 2 pV/3)2 2 1 V3/2
43. Over the disk x* +y? < 3 ffl ; dA = f f = drdQ:fO [—3In(1—2%)] )" db
—f d9—(ln2)f 49 = 7 in4
Over the disk x? + y? < I: ff1 Loda= [ e arae= [ [ tim [ dr] o
2w
_ . _ . 1 _ . .
=/, algr}f [~ 3In(1—a?)] d0—27r-alin{7 [~ 3 1In(1 —a?)] =2 - 00, so the integral does not exist over
XX +y? <1

8 pf6) 8 (6) g 8
44. The area in polar coordinates is given by A = f j; rdrdd = f E] do =1 f £2(0) df = f 512.do,
« [e3 0 o «
where r = f(6)

45. average = -1 f f [(rcos 6 —h)*> +1?sin? 0] rdrdf = L, f f (r* — 2r’h cos 6 + rh?) drdf

2T 2w
_ 1 al _ 2a%hcosd | a’h? __f a2 _ 2ahcosf , h? __ 1 |a’@ _ 2ahsing l12_t9
= 0(4 3 +2)d9*rr o \ % ) do =14 3 T3

a2

=1 (a’ +2h%)

0

3m/4

2sin 6 3m/4
a6. A= [ [ rdrdo=1 [T (dsin? 0 —csc? ) do

/4

=120 —sin20 +cot 0]} = 3

3n/4 /4

r=2sin@

- T x
47-50. Example CAS commands:
Maple:
f:=(xy) > y/(x"2+y*2);
ab:=0,1;
fl :=x->x;
f2:=x->1;
plot3d( f(x,y), y=f1(x)..f2(x), x=a..b, axes=boxed, style=patchnogrid, shading=zhue, orientation=[0,180], title="#47(a)
(Section 15.4)" ); # (a)
ql :=eval( x=a, [x=r*cos(theta),y=r*sin(theta)] ); # (b)

q2 :=eval( x=b, [x=r*cos(theta),y=r*sin(theta)] );

q3 :=eval( y=f1(x), [x=r*cos(theta),y=r*sin(theta)] );
g4 = eval( y=f2(x), [x=r*cos(theta),y=r*sin(theta)] );
thetal := solve( g3, theta );
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