
Bazı sonsuz serilerin toplamları ise

1 + 2 + 3 + 4 + 5 + …

toplamında olduğu gibi sonlu değildir. İlk birkaç terimin toplamı terim sayısı arttıkça
giderek çoğalır. Yeteri kadar terim toplamakla önceden belirlenmiş herhangi bir sabit sayı
aşılır.

Bazı serilerde ise,

harmonik serisinde olduğu gibi toplamın sonlu olup olmadığı açık değildir. Toplanan terim
sayısını arttırdıkça sonlu bir değere yaklaşılıp yaklaşılmadığı veya sınırsız olarak büyüyen
bir toplam elde edilip edilmediği açık değildir.  

Sonsuz diziler ve seriler teorisini geliştirirken, önemli bir uygulama türetilebilir bir
ƒ(x) fonksiyonunu x’in kuvvetlerinin bir sonsuz toplamı olarak temsil etme metodu verir.
Bu metotla polinomların nasıl hesaplandığı, türetildiği ve integre edildiği hakkındaki bil-
gilerimizi polinomlardan çok daha genel olan bir fonksiyonlar sınıfına genişletebiliriz.
Ayrıca bir fonksiyonu sinüs ve cosinüs fonksiyonlarının sonsuz bir toplamı olarak temsil
etmenin bir yöntemini inceleyeceğiz.  Bu yöntem fonksiyonları incelemek için güçlü bir
araç verecektir. 
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SONSUZ DİZİLER

VE SERİLER

G‹R‹fi İki hatta birkaç sayının nasıl toplanacağını herkes bildiği halde sonsuz tane sayının
nasıl toplanacağı o kadar açık değildir. Bu bölümde sonsuz seriler teorisinin konusu olan
bu gibi soruları çalışacağız. Sonsuz serilerin toplamları bazen 

toplamında olduğu gibi sonludur. Bu toplam geometrik olarak aşağıda gösterildiği gibi birim
karenin daima ikiye bölünmesiyle elde edilen alanlarla temsil edilir. Küçük dikdörtgenlerin
alanlarının toplamı içini doldurmuş oldukları birim karenin alanını verir. Toplanan terim
sayısını arttırdıkça toplam alana daha çok yaklaşılır.  
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TANIM Sonsuz Dizi
Bir  sonsuz sayı dizisi tanım kümesi pozitif tamsayılar kümesi olan bir
fonksiyondur.

Örneğin

2, 4, 6, 8, 10, 12, … , 2n, … 

dizisi ile eşlenen fonksiyon 1'i   a1 = 2'ye  2'yi  a2 = 4'e vs. gönderir. Bu dizinin genel
davranışı 

an = 2n

formülü ile tanımlanır. 
Tanım kümesini verilen bir  n0 sayısından büyük tamsayılar olarak da alabilir ve bu

tipte diziler de düşünebiliriz. 

12, 14, 16, 18, 20, 22 …

dizisi an = 10 + 2n formülü ile tanımlanır. Bu dizi ayrıca n indisi 6 dan başlayıp artmak
üzere daha basit olan bn = 2n formülü ile de tanımlanabilir. Böyle basit formüller elde
edebilmek için dizinin ilk indisini herhangi bir sayı olarak alabiliriz. Yukarıdaki {an}
dizisi a1 ile başlarken {bn} dizisi b6  ile başlamaktadır. Sıra önemlidir. Zira 1, 2, 3, 4…
dizisi 1, 2, 3, 4 … dizisi ile aynı değildir.

Diziler

gibi terimlerini belirten kuralları yazarak veya 

 dn = s -1dn + 1

 cn =
n - 1

n ,

 bn = s -1dn + 1 
1
n ,

 an = 2n ,

Diziler 

Bir dizi verilen bir sıra ile 

a1, a2, a3, … an, … 

gibi  bir sayılar listesidir.  a1, a2, a3,  vs.  her biri bir sayıyı temsil eder. Bunlar dizinin te-
rimleri dir. Örneğin,   

2, 4, 6, 8, 10, 12, … , 2n, … 

dizisinin ilk terimi a1 = 2, ikinci terimi  a2 = 4 ve n.terimi  an = 2n dir. n tamsayısına an'nin
indisi denir ve  an'nin listenin neresinde bulunduğunu gösterir. Genelde 

a1, a2, a3, … an, … 

dizisini 1'i  a1'e, 2'yi  a2'ye, 3'ü a3'e  ve genel olarak pozitif n tamsayısını n.terim an'ye gön-
deren bir fonksiyon olarak düşünebiliriz. Bu, bir dizinin aşağıdaki formel tanımına yol
açar. 

11.1
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Diziler ve Seriler
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şeklinde listelenerek tanımlanabilirler. Bazen  

da yazarız.
Şekil 11.1, dizileri grafik olarak temsil etmenin iki yolunu göstermektedir. İlki,

a1, a2, a3, … an, …  terimlerinden ilk birkaçını reel eksen üzerinde işaretler. İkinci yöntem
diziyi tanımlayan fonksiyonun grafiğini gösterir. Fonksiyon sadece tamsayılarda tanımlı-
dır ve grafik xy-düzleminde, (1, a1), (2,  a2),… (n, an), … noktalarına işaretlenmiş bazı
noktalardan oluşur.  

5an6 = E2n Fn = 1

q

 . .

 5dn6 = 51, -1, 1, -1, 1, -1, Á , s -1dn + 1, Á 6 .

 5cn6 = e0, 
1
2

, 
2
3

, 
3
4

, 
4
5, Á , 

n - 1
n , Á f

 5bn6 = e1, -
1
2

, 
1
3

, -
1
4

, Á , s -1dn + 1 
1
n, Á f

 5an6 = E21, 22, 23, Á , 2n, Á F
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fiEK‹L 11.1 Diziler, reel eksen üzerinde noktalar veya yatay n-ekseni terimin
indis sayısı, düşey an ekseni de terimin değeri olmak üzere xy-düzleminde
noktalar olarak temsil edilebilirler.

Yak›nsakl›k ve Iraksakl›k 
Bazen bir dizideki sayılar, n indisi arttıkça, tek bir değere yaklaşır. n arttıkça terimleri 0’a
yaklaşan

dizisinde ve terimleri 1’e yaklaşan
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Tanım, x sonsuza giderken bir ƒ(x) fonksiyonunun limiti tanımına çok benzerdir
(Bölüm 2.4’te limx→∞ ƒ(x)). Dizilerin limitlerini hesaplamak için bu bağıntıyı kul-
lanacağız.

ÖRNEK 1 Tan›m› Uygulamak 

(a) (b)

olduğunu gösterin.

Çözüm

(a) � � 0 verilmiş olsun.

gerektirmesi sağlanacak şekilde bir N tamsayısının var olduğunu göstermemiz gere-
kir. Yukarıdaki gerektirme, (1@n) � � veya n � 1@� ise geçerli olacaktır. N, 1@�’dan
daha büyük bir tamsayı ise gerektirme her n � N için geçerli olur. Bu, limn→∞ (1@n) = 0
olduğunu ispatlar.

(b) � � 0 verilmiş olsun. 

gerektirmesi sağlanacak şekilde bir N tamsayısının var olduğunu göstermemiz gerekir.
k – k = 0 olduğundan, herhangi bir pozitif N sayısı kullanırsak gerektirme geçerli olacak-
tır. Bu herhangi bir k sabiti için limn→∞ k = k olduğunu ispatlar.

n 7 N Q ƒ k - k ƒ 6 P .

n 7 N Q ` 1n - 0 ` 6 P .

lim
n: q

 k = k sany constant kdlim
n: q

 
1
n = 0

dizisinde durum böyledir. Diğer taraftan 

gibi dizilerde n indisi arttıkça herhangi bir sayıdan daha büyük olan terimler vardır. Ayrıca

gibi diziler  asla tek bir değere yaklaşmadan 1 ve –1 arasında ileri geri sıçrar. Aşağıdaki ta-
nım bir dizinin bir limit değere yakınsamasının anlamını açıklamaktadır. Tanım şunu söy-
lemektedir: bir dizide n indisini bir N sayısından büyük alarak dizinin terimleri üzerinde
yeteri kadar ilerlersek an ile dizinin limiti arasındaki fark önceden belirlenmiş herhangi bir
� � 0  sayısından küçük kalır. 

51, -1, 1, -1, 1, -1, Á , s -1dn + 1, Á 6

E21, 22, 23, Á , 2n, Á F

TANIMLAR Yak›nsakl›k, Iraksakl›k, Limit
Her pozitif � sayısına 

{an} dizisi L sayısına yakınsar. Böyle bir L sayısı mevcut değilse, {an}
ıraksar deriz.

{an} dizisi L’ye yakınsıyorsa, limn→∞ an = L veya kısaca an → L yazar ve
L’ye dizinin limiti deriz (Şekil 11.2).

n 7 N Q ƒ an - L ƒ 6 P .

aN

(N, aN)

0 1 32 N n

L

L � �

L � � L � �L

L � �

(n, an)

0 a2 a3 a1 an

n

an

fiEK‹L 11.2 y = L, {(n, an)} noktalar
dizisinin yatay asimptotu ise an → L dir.
Yukarıdaki şekilde aN’den sonraki bütün
an’ler L’nin e civarındadır.

TARİHSEL BİYOGRAFİ

Nicole Oresme
(1320–1382 dolaylarında)

(k herhangi bir sabit)



ÖRNEK 2 Iraksak Bir Dizi

dizisinin ıraksadığını gösterin.

Çözüm Dizinin bir L sayısına yakınsadığını varsayın. Limit tanımında � = 1@2 seçerek, n
indisi bir N sayısından büyük olan bütün an dizi terimleri  L’nin � = 1@2 civarında bulun-
maları gerekir. Dizinin diğer her terimi gibi 1 terimi tekrarlı olarak gözüktüğünden 1 sayısı
L’nin � = 1@2 civarında bulunmalıdır. Bundan dolayı u L – 1 u � 1@2 veya buna denk olarak
1@2 � L � 3@2 olmalıdır. Benzer şekilde –1 sayısı da keyfi büyük indislerle tekrarlı olarak
dizide gözükür. Dolayısıyla, u L – (–1) u � 1@2 veya buna denk olarak  –3@2 � L � –1@2
eşitsizlikleri de ayrıca sağlanmalıdır. Fakat bu aralıklar örtüşmediklerinden L sayısı (1@2,
3@2) ve (–3@2, –1@2)  ve   aralıklarının ikisinde birden bulunamaz. Bu nedenle böyle bir L
limiti yoktur ve dolayısıyla dizi ıraksar.

Şuna dikkat edin aynı düşünce sadece 1@2  için değil 1’den küçük herhangi bir pozi-
tif � sayısı için de geçerlidir.

dizisi de ıraksar fakat  nedeni farklıdır. n indisinin artmasıyla birlikte terim-
leri herhangi bir sabit sayıdan daha büyük olur. Bu dizinin davranışını 

yazarak tanımlarız. Bir dizinin limitini sonsuz olarak yazmakla, n arttıkça an ile arasın-
daki farkın azaldığını söylemiyoruz. Dizinin yakınsadığı bir sonsuz sayısının var olduğunu
da söylemiyoruz. Sadece n arttıkça, an’nin sayısal olarak büyüdüğünü ve nihayetinde her-
hangi sabit bir sayıdan büyük kaldığını açıklayan bir notasyon kullanıyoruz.

q

lim
n: q

2n = q .

{1n}

51, -1, 1, -1, 1, -1, Á , s -1dn + 1, Á 6
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TANIM Sonsuza Iraksama 
Her M sayısına karşılık, N’den büyük her n için  an � M olacak şekilde bir  N
tamsayısı varsa dizisi sonsuza ıraksar deriz.  Bu şart sağlanırsa

yazarız. Benzer şekilde, her  m sayısına karşılık,  her  n � N için an � m olacak
şekilde bir  N tamsayısı varsa dizisi eksi sonsuza ıraksar deriz ve 

yazarız.

lim
n: q

 an = - q or an : - q .

5an6
lim

n: q

 an = q or an : q .

5an6

Bir dizi sonsuza veya eksi sonsuza ıraksamadan da ıraksak olabilir. Bunu Örnek 2’de
gördük. Ayrıca ve dizileri de böyle
dizilere örnektir.

Dizilerin Limitlerini Hesaplamak 

Daima dizi limitinin formel tanımını,  �’ları ve N’leri hesaplayarak, kullanmak zorunda ol-
saydık dizilerin limitlerini hesaplamak zahmetli bir iş olurdu. Neyse ki birkaç basit örnek
geliştirebilir ve bunları birçok dizinin limitlerinin çabucak incelenmesinde kullanabiliriz.
Dizilerin nasıl birleştirilebileceklerini ve nasıl karşılaştırılabileceklerini anlamamız
gerekecektir. Diziler, tanım kümeleri pozitif tamsayılar kümesine kısıtlanmış fonksiyonlar
olduklarından Bölüm 2’de fonksiyon limitleri hakkındaki teoremlerin diziler için versiyon-
larının olması çok şaşırtıcı değildir. 

51, 0, 2, 0, 3, 0, Á 651, -2, 3, -4, 5, -6, 7, -8, Á 6

veya       an → q

veya       an → –q
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İspatı Bölüm 2.2’deki Teorem 1’in ispatına benzerdir ve atlanacaktır.

ÖRNEK 3 Teorem 1’i Uygulamak

Teorem 1’i Örnek 1’deki limitleri birleştirirsek şunları buluruz:

(a)

(b)

(c)

(d)

Teorem 1’i uygularken dikkatli olun. Teorem, örneğin, ve dizilerinin
toplamlarının limiti varsa ve dizilerinin her birinin limitinin var

olduğunu söylemiyor. Meselâ ve 
dizilerinin ikisi de ıraksaktır, fakat toplamları açık olarak 0’a
yakınsar.

Teorem 1’in bir sonucu şudur: ıraksak bir dizinin sıfırdan farklı her katı ıraksar. Ter-
sine, bir c ≠ 0 için dizisinin yakınsadığını varsayın. Bu durumda Teorem1’deki Sa-
bitle Çarpım Kuralında  k = 1@c alarak  

dizisinin yakınsadığını görürüz. Böylece, yakınsamadıkça yakınsayamaz.
Eğer  yakınsamazsa  yakınsamaz. 

Aşağıdaki teorem Bölüm 2.2’deki Sandviç Teoreminin dizi versiyonudur. Alıştırma
95’te teoremi ispatlamanız istenmektedir.

5can65an6
5an65can6

e 1
c

# can f = 5an6

5can6

5an + bn6 = 50, 0, 0, Á 65bn6 = 5-1, -2, -3, Á 65an6 = 51, 2, 3, Á 65bn65an65an + bn6
5bn65an6

lim
n: q

 
4 - 7n6

n6
+ 3

= lim
n: q

 
s4>n6d - 7

1 + s3>n6d
=

0 - 7
1 + 0

= -7.

lim
n: q

 
5
n2 = 5 # lim

n: q

 
1
n

# lim
n: q

 
1
n = 5 # 0 # 0 = 0

lim
n: q

 an - 1
n b = lim

n: q

 a1 -
1
n b = lim

n: q

1 - lim
n: q

 
1
n = 1 - 0 = 1

lim
n: q

 a- 1
n b = -1 # lim

n: q

 
1
n = -1 # 0 = 0

TEOREM 1
ve reel sayı dizileri,  A ve B reel sayılar olsun. limn→∞ an = A

ve limn→∞ bn = B ise aşağıdaki kurallar geçerlidir.

1. Toplama Kuralı:

2. Fark Kuralı:

3. Çarpım Kuralı:

4. Sabitle Çarpım Kuralı:

5. Bölüm Kuralı: limn:q  
an

bn
=

A
B
 if B Z 0

limn:q sk # bnd = k # B sAny number kd
limn:q san

# bnd = A # B

limn:q san - bnd = A - B

limn:q san + bnd = A + B

5bn65an6

Sabitle Çarpım Kuralı ve Örnek 1a

Fark Kuralı
ve Örnek 1a

Çarpım Kuralı

Toplama ve Bölüm Kuralı

TEOREM 2 Diziler ‹çin Sandviç Teoremi

, ve reel sayı dizileri olsunlar. Belirli bir N indisinden büyük her
n için geçerliyse ve limn→∞ an = limn→∞ cn = L ise, bu durumda
limn→∞ bn = L olur.

an … bn … cn

5cn65bn65an6

(Herhangi bir k)

B ≠ 0 için



Teorem 2’nin hemen görülen bir sonucu, ve cn → 0 ise, –cn � bn � cn

olduğundan  bn → 0 olmasıdır. Aşağıdaki örnekte bunu kullanıyoruz.

ÖRNEK 4 Sandviç Teoremini Uygulamak

1@n → 0 olduğunda, aşağıdakileri biliyoruz.

(a) çünkü

(b) çünkü    

(c) çünkü     

Teorem 1 ve 2’nin uygulanması yakınsak bir diziye sürekli bir fonksiyonun uygulan-
masının yakınsak bir dizi oluşturacağını belirten bir teoremle genişletilir. Teoremi ispatsız
veriyoruz (Alıştırma 96).

-
1
n … s -1dn 

1
n …

1
n .s -1dn 

1
n : 0 

0 …
1
2n …

1
n ;

1
2n : 0 

-
1
n …

cos n
n …

1
n ;

cos n
n : 0 

ƒ bn ƒ … cn
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TEOREM 3 Diziler ‹çin Sürekli Fonksiyon Teoremi
bir reel sayı dizisi olsun. ve ƒ fonksiyonu L’de sürekli ve bütün

an’lerde tanımlı ise, ƒ(an) → ƒ(L) olur.
an : L5an6

ÖRNEK 5 Teorem 3’ü Uygulamak

olduğunu gösterin.

Çözüm (n + 1)@n → 1 olduğunu biliyoruz. Teorem 3’te ve L = 1 almak
verir.

ÖRNEK 6 Dizisi

dizisi 0’a yakınsar. Teorem 3’te  an = 1@n, ƒ(x) = 2x ve L = 0 olarak, 21@n = ƒ(1@n) →
ƒ(L) = 20 = 1 olduğunu görürüz. dizisi 1’e yakınsar (Şekil 11.3).

l’Hôpital Kural›n› Kullanmak

Aşağıdaki teorem bazı dizilerin limitini bulmada l’Hôpital kuralını kullanmamızı sağlar.
Teorem,  limn→∞ an ile limx→∞ ƒ(x) arasındaki bağıntıyı sağlar.

521>n651>n6
521>n6

1sn + 1d>n : 11 = 1.
ƒsxd = 1x

2sn + 1d>n : 1.

1
3

0

1

(1, 2)

y � 2x

1

2

, 21/3⎛
⎝

⎛
⎝

, 21/2⎛
⎝

⎛
⎝

1
3

1
2

1
2

x

y

FIGURE 11.3 n → � iken, 1@n → 0 ve
dır. (Örnek 6).21>n : 20

TEOREM 4
ƒ(x)’in her  x � n0 için tanımlı bir fonksiyon olduğunu ve ’nin her n � n0

için an = ƒ(n) olacak şekilde bir reel sayı dizisi olduğunu varsayın. 
Bu durumda,

olur.lim
x: q

 ƒsxd = L Q lim
n: q

 an = L .

5an6

‹spat limx→∞ ƒ(x) = L olduğunu varsayın. Her pozitif � sayısına karşılık

gerektirmesi gerçeklenecek şekilde bir M sayısı vardır.

x 7 M Q ƒ ƒsxd - L ƒ 6 P .
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N tamsayısı M’den büyük ve n0 ’dan büyük veya eşit olsun. Bu durumda

n � N ⇒ an = ƒ(n)         ve          u an – L u = u ƒ(n) – L u � �.

ÖRNEK 7 L’Hôpital Kural›n› Uygulamak

olduğunu gösterin.

Çözüm (ln x)@x fonksiyonu her x � 1 için tanımlıdır ve pozitif tamsayılarda verilen
diziyle uyuşur. Dolayısıyla, Teorem 4’e göre,  limn→∞ (ln n)@n, eğer varsa
limn→∞ (ln x)@x’e eşit olacaktır. L’Hôpital kuralının bir kere uygulanışı

olduğunu gösterir. Buradan limn→∞ (ln n)@n = 0 sonucunu çıkarırız.

Bir dizinin limitini bulmak için L’Hôpital kuralını kullanırken, genellikle n’ ye sürekli
bir reel değişken gibi davranır ve doğrudan n’ye göre türev alırız. Bu bizi Örnek 7’de
yaptığımız gibi an formülünü yeniden yazmaktan kurtarır.

ÖRNEK 8 L’Hôpital Kural›n› Uygulamak

’yi bulun.

Çözüm l’Hôpital kuralına göre (n’ye göre türev alarak)

buluruz.

ÖRNEK 9 Yak›nsakl›¤› Belirlemek ‹çin L’Hôpital Kural›n› Uygulamak  

n. terimi

colan dizi yakınsar mı? Yakınsarsa, limn→∞ an’yi bulun.

Çözüm Limit 1∞ belirsiz formuna götürür. Önce an’nin doğal logaritmasını alarak formu
∞ ⋅ 0 haline getirirsek, l’Hôpital kuralını uygulayabiliriz.

 = n ln an + 1
n - 1

b .

 ln an = ln an + 1
n - 1

bn

an = an + 1
n - 1

bn

 lim
n: q

 
2n

5n
= lim

n: q

 
2n # ln 2

5

lim
n: q

 
2n

5n
.

lim
x: q

 
ln x
x = lim

x: q

 
1>x
1

=
0
1

= 0.

lim
n: q

 
ln n
n = 0.

= q



Bu durumda,

bulunur. ln an → 2 ve ƒ(x) = ex sürekli olduğundan, Teorem 4

olduğunu söyler.  dizisi e2’ye yakınsar.

S›k Karfl›lafl›lan Limitler

Aşağıdaki teorem sık sık karşılaşılan bazı limitleri vermektedir.

5an6
an = e ln an : e2 .

 = lim
n: q

 
2n2

n2
- 1

= 2 .

 = lim
n: q

 
-2>sn2

- 1d

-1>n2

 = lim
n: q

 

ln an + 1
n - 1

b
1>n

 lim
n: q

 ln an = lim
n: q

 n ln an + 1
n - 1

b

754 Bölüm 11: Sonsuz Diziler ve Seriler

l’Hôpital Kuralı

q # 0

0
0

TEOREM 5
Aşağıdaki altı dizi karşılarında gösterilen limitlere yakınsarlar.

1.

2.

3.

4.

5.

6.

(3)–(6) formüllerinde, n → iken x sabit kalır.  q

lim
n: q

 
xn

n!
= 0 sany xd

lim
n: q

 a1 +
x
n b

n

= ex sany xd

lim
n: q

 xn
= 0 s ƒ x ƒ 6 1d

lim
n: q

 x1>n
= 1 sx 7 0d

lim
n: q

2n n = 1

lim
n: q

 
ln n
n = 0

‹spat Birinci limit Örnek 7 de hesaplanmıştı. Sonraki ikisi logaritma alarak ve Teorem
4’ü uygulayarak ispatlanabilir (Alıştırma 93 ve 94 ). Diğer ispatlar Ek 3’te verilmiştir. 

ÖRNEK 10 Teorem 5’i Uygulamak

(a) Formül 1

(b) Formül 2

(c) x = 3 ile Formül 3 ve Formül 22n 3n = 31>nsn1/nd : 1 # 1 = 1

2n n2
= n2>n

= sn1/nd2 : s1d2
= 1

ln sn2d
n =

2 ln n
n : 2 # 0 = 0

Faktöriyel Gösterim
n! (“n faktöriyel”) 1’den n’ye kadar olan
tamsayıların 1 ⋅ 2 ⋅ 3 ⋅⋅⋅ n çarpımı
anlamına gelir
(n + 1)! = (n + 1) ⋅ n! olduğuna dikkat
edin. Yani

ve
’dir.

0!’yi 1 olarak tanımlarız. Faktöriyeller,
aşağıdaki tablonun gösterdiği gibi,
eksponansiyellerden bile hızlı büyürler.

5! = 1 # 2 # 3 # 4 # 5 = 5 # 4! = 120.
4! = 1 # 2 # 3 # 4 = 24

n (yuvarlanmış) n!

1 3 1

5 148 120

10 22,026 3,628,800

20 2.4 * 10184.9 * 108

en

(her x için)

(her x için)



11.1 Diziler 755

(d) ile Formül 4

(e) x = –2 ile Formül 5

(f) x = 100 ile Formül 6

Tekrarlamal› Tan›mlar

Şimdiye kadar, her an’yi doğrudan n’nin değerinden hesapladık. Ama diziler genellikle 

1. Başlangıç teriminin veya terimlerinin değer(ler)i ve

2. Sonraki terimleri kendilerinden önce gelen terimlerden hesaplamak için tekrarlama
formülü adı verilen bir kural verilerek tanımlanır.

ÖRNEK 11 Tekrarlamal› Olarak Tan›mlanan Diziler 

(a) a1 = 1 ve an = an – 1 + 1 ifadeleri pozitif tamsayılardan oluşan 1, 2, 3, …, n, … dizisini
tanımlar. a1 = 1 ile, a2 = a1 + 1 = 2, a3 = a2 + 1 = 3 vs.  buluruz.

(b) a1 = 1 ve an = n ⋅ an – 1 ifadeleri faktöriyellerden oluşan 1, 2, 6, 24, …, n!, … dizisini
tanımlar. a1 = 1 ile, a2 = 2 ⋅ a1 = 2,  a3 = 3 ⋅ a2 = 6, a4 = 4 ⋅ a3 = 24 vs. buluruz.

(c) a1 = 1, a2 = 1 ve an+1 = an + an–1 ifadeleri Fibonacci sayıları denen 1, 1, 2, 3, 5, …
dizisini oluşturur. a1 = 1 ve a2 = 1 ile, a3 = 1 + 1 = 2, a4 = 2 + 1 = 3, a5 = 3 + 2 = 5 vs.
elde ederiz.

(d) Newton yöntemini uygulayarak görebileceğimiz gibi, x0 = 1 ve
ifadeleri, sin x – x2 = 0 denkleminin bir

çözümüne yakınsayan bir dizi tanımlarlar. 

S›n›rl› Azalmayan Diziler 

Genel bir dizinin terimleri, bazen büyüyerek bazen de küçülerek, sıçramalar yapabilir.
Dizilerin önemli özel bir çeşidi, her bir terimin en az kendisinden önceki kadar büyük
olduğu dizilerdir.

xn + 1 = xn - [ssin xn - xn
2d>scos xn - 2xnd]

100n

n!
: 0

an - 2
n bn

= a1 +
-2
n b

n

: e-2

x = -

1
2

a- 1
2
bn

: 0

TANIM Azalmayan Diziler
Her  n için  özelliğini taşıyan bir  dizisine azalmayan dizi
denir.

5an6an … an + 1

ÖRNEK 12 Azalmayan Diziler  

(a) Doğal sayılardan oluşan 1, 2, 3, …, n, … dizisi.

(b) dizisi

(c) Sabit dizisi536
1
2

, 
2
3

, 
3
4

, Á , 
n

n + 1
, Á



İki tür azalmayan dizi vardır—terimleri herhangi sonlu bir  sınırı aşan diziler ve aşmayan-
lar.
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TANIMLAR S›n›rl›, Üst S›n›r, En Küçük Üst S›n›r
Her n için an � M olacak şekilde bir M sayısı varsa dizisi üstten sınırlıdır.
M sayısı için bir üst sınırdır. M sayısı ’nin bir üst sınırı ise ve M’den 
daha küçük bir sayı için bir üst sınır olamıyorsa M sayısı ’nin en küçük
üst sınırıdır.

5an65an6
5an65an6

5an6

ÖRNEK 13 S›n›rl›l›k Tan›m›n› Uygulamak 

(a) 1, 2, 3, …, n, … dizisinin bir üst sınırı yoktur.

(b) dizisi üstten M = 1 ile sınırlıdır. 

1’den daha küçük bir sayı dizinin bir üst sınırı olamaz, dolayısıyla 1 en küçük üst
sınırdır (Alıştırma 113).

Üstten sınırlı azalmayan bir dizinin her zaman bir en küçük alt sınırı vardır. Bu reel
sayıların, Ek 4’te incelenen, tamlık özelliğinin bir sonucudur. L en küçük üst sınırsa,
dizinin L’ye yakınsadığını ispatlayacağız.

(1, a1), (2, a2), … , (n, an), … noktalarını xy-düzleminde işaretlediğimizi varsayın. M
dizinin bir üst sınırı ise bütün bu noktalar y = M doğrusu üstünde veya aşağısında bulu-
nacaklardır (Şekil 11.4).  y = L doğrusu bu tip doğruların en altta bulunanıdır. (n, an) nok-
talarının hiçbiri  y = L’nin üzerinde bulunmaz, fakat bazıları, � pozitif bir sayı olmak
üzere, daha alttaki bir y = L – � doğrusunun yukarısında bulunurlar. Dizi L’ye yakınsar,
çünkü

(a) n’nin bütün değerleri için an � L’dir ve

(b) � � 0 ise, aN � L – � olacak şekilde en azından bir N tamsayısı vardır.

’nin azalmayan bir dizi olması bize ayrıca

her n � N için        an � aN � L – �

olduğunu söyler. Yani, N inci sayıdan büyük bütün an sayıları L’nin � civarında bulunurlar.
Bu da L’nin dizisinin limiti olma koşuludur.

Azalmayan dizilerin özellikleri aşağıdaki teoremde özetlenmiştir. Artmayan diziler
için de benzer bir sonuç geçerlidir (Alıştırma 107).

5an6

5an6

1
2

, 
2
3

, 
3
4

, Á , 
n

n + 1
, Á

0 1 2 3 4

L

M

5

y � L

(8, a8)

6 7 8

y � M

(5, a5)

(1, a1)

x

y

fiEK‹L 11.4 Azalmayan bir dizinin
terimlerinin bir M üst sınırı varsa, limitleri
L � M olur.

TEOREM 6 Azalmayan Dizi  Teoremi
Reel sayılardan oluşan azalmayan bir dizi, ancak ve yalnız üstten sınırlı ise
yakınsar. Azalmayan bir dizi yakınsıyorsa, en küçük üst sınırına yakınsar.

Teorem 6, üstten sınırlı azalmayan bir dizinin yakınsak olmasını gerektirir. Dizi üstten
sınırlı değilse sonsuza ıraksar.
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ALIfiTIRMALAR 11.1

Bir Dizinin Terimlerini Bulmak
1–6 alıştırmalarının her birinde bir dizisinin n. terimi an’nin for-

mülü verilmektedir. a1, a2, a3 ve a4’ün değerlerini bulun.

1. 2.

3. 4.

5. 6.

7–12 alıştırmalarının her birinde dizinin ilk terimi veya ilk iki terimi
ile birlikte bir tekrarlama formülü verilmektedir. Dizinin ilk on terimi-
ni yazın.

7.

8.

9.

10.

11.

12.

Bir Dizinin Formülünü Bulmak
13–22 alıştırmalarındaki dizilerin n. teriminin formülünü bulun.

13. 1, –1, 1, –1, 1, … dizisi

14. –1, 1, –1, 1, –1, … dizisi

15. 1, –4, 9, –16, 25, … dizisi

16. dizisi

17. 0, 3, 8, 15, 24, … dizisi

18. –3, –2, –1, 0, 1, … dizisi

19. 1, 5, 9, 13, 17, … dizisi

20. 2, 6, 10, 14, 18, … dizisi

21. 1, 0, 1, 0, 1, … dizisi

22. 0, 1, 1, 2, 2, 3, 3, 4, … dizisi

Limit Bulmak
23–81 alıştırmalarındaki dizilerinden hangileri yakınsar, hangi-
leri ıraksar? Her yakınsak dizinin limitini bulun.

5an6

1, -
1
4

, 
1
9

, -
1

16
, 

1
25

, Á

a1 = 2, a2 = -1, an + 2 = an + 1>an

a1 = a2 = 1, an + 2 = an + 1 + an

a1 = -2, an + 1 = nan>sn + 1d

a1 = 2, an + 1 = s -1dn + 1an>2
a1 = 1, an + 1 = an>sn + 1d

a1 = 1, an + 1 = an + s1>2nd

an =

2n
- 1

2nan =

2n

2n + 1

an = 2 + s -1dnan =

s -1dn + 1

2n - 1

an =

1
n!

an =

1 - n

n2

5an6
23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. (İpucu: 1 n ile karşılaştırın.)>an =

n!
nn

an = 2n 32n + 1an = 2n 4nn

an = ln n - ln sn + 1dan =

ln n

n1>n

an = sn + 4d1>sn + 4dan = a3n b
1>n

an = 2n n2an = 2n 10n

an = a1 -

1
n b

n

an = a1 +

7
n b

n

an = s0.03d1>nan = 81>n

an =

ln n
ln 2n

an =

ln sn + 1d

2n

an =

3n

n3an =

n
2n

an =

sin2 n
2nan =

sin n
n

an = np cos snpdan = sin ap
2

+

1
n b

an =

1
s0.9dnan = A

2n
n + 1

an = a- 1
2
bn

an =

s -1dn + 1

2n - 1

an = a2 -

1
2n b a3 +

1
2n ban = an + 1

2n
b a1 -

1
n b

an = s -1dn a1 -

1
n ban = 1 + s -1dn

an =

1 - n3

70 - 4n2an =

n2
- 2n + 1
n - 1

an =

n + 3
n2

+ 5n + 6
an =

1 - 5n4

n4
+ 8n3

an =

2n + 1

1 - 32n
an =

1 - 2n
1 + 2n

an =

n + s -1dn

nan = 2 + s0.1dn

Pozitif tamsayıların
karelerinin tersleri,
işaretleri değişiyor.

Değişen işaretli 1’ler

Değişen işaretli 1’ler

Pozitif tamsayıların
kareleri, işaretleri
değişiyor.

Pozitif tamsayıların
karelerinden 1 çıkartılmış

–3’ten başlayan
tamsayılar

Her ikinci tek tamsayı

Her ikinci çift tamsayı

Sırayla değişen1’ler ve
0’lar
Her tamsayının
tekrarlanması



60. 61.

62. 63.

64. 65.

66. 67.

68. 69.

70. 71.

72. 73.

74. 75.

76. 77.

78. 79.

80. 81.

82.

83. 84.

Teori ve Örnekler
85. Bir dizinin ilk terimi x1 = 1’dir. Birbirini izleyen her terim kendin-

den önce gelen terimlerin toplamıdır:

Dizi ilk terimlerinden yeteri kadarını yazarak, xn için n � 2
değerlerinde geçerli olacak genel bir formül yazın.

86. Bir rasyonel sayı dizisi aşağıdaki gibi tanımlanmaktadır:

Burada paylar bir dizi, paydalar ikinci bir dizi ve bunların oranları
üçüncü bir dizi oluşturur. xn ve yn sırasıyla n. kesir rn = xn@yn’nin
pay ve paydası olsun.

a. ve daha genel olarak,
a2 – 2b2 = –1 veya +1 ise sırasıyla

olduğunu doğrulayın.

sa + 2bd2
- 2sa + bd2

= +1 or -1,

x1
2

- 2y1
2

= -1, x2
2

- 2y2
2

= +1

1
1

, 
3
2

, 
7
5

, 
17
12

, Á , 
a
b

, 
a + 2b
a + b

, Á

xn + 1 = x1 + x2 +
Á

+ xn .

an =

L

n

1
 
1
xp dx, p 7 1an =

1
nL

n

1
 
1
x  dx

an =

1

2n2
- 1 - 2n2

+ n

an = n - 2n2
- nan =

sln nd5

2n

an =

sln nd200

nan = 2n n2
+ n

an = a1
3
bn

+

1

22n
an =

1

2n
 tan-1 n

an = tan-1 nan = n a1 - cos 
1
n b

an =

n2

2n - 1
 sin 

1
nan = sinh sln nd

an = tanh nan =

s10>11dn

s9/10dn
+ s11/12dn

an =

3n # 6n

2-n # n!
an = a1 -

1
n2 b

n

an = a xn

2n + 1
b1>n

, x 7 0an = a n
n + 1

bn

an = a3n + 1
3n - 1

bn

an = ln a1 +

1
n b

n

an = a1n b
1>sln nd

an =

n!
2n # 3n

an =

n!
106n

an =

s -4dn

n!
b. rn = xn@yn kesirleri n arttıkça bir limite yaklaşır. Bu limit

nedir? (İpucu: rn
2 – 2 = �(1@yn)

2 olduğunu ve yn’nin n’den
küçük olmadığını göstermek için (a) şıkkını kullanın.

87. Newton yöntemi Aşağıdaki diziler Newton yönteminin 

tekrarlamalı formülünden gelirler. Diziler yakınsar mı? Yakınsar-
larsa, hangi değere yakınsarlar? Her durumda, işe diziyi üreten ƒ
fonksiyonunu tanımlayarak başlayın.

a.

b.

c.

88. a. ƒ(x)’in [0, 1] aralığındaki her x için türetilebildiğini ve
ƒ(0) = 0 olduğunu varsayın. an = nƒ(1@n) kuralıyla 
dizisini tanımlayın. limn→∞ an = ƒ	(0) olduğunu gösterin.

(a) şıkkındaki sonucu kullanarak aşağıdaki dizilerinin limit-
lerini bulun.

b. c.

d.

89. Pisagor üçlüleri a2 + b2 = c2 ise, a, b ve c’den oluşan bir pozitif
tamsayılar üçlüsüne Pisagor üçlüsü denir. a bir tek tamsayı ve

sırasıyla  a2@2’nin tamsayı taban ve tavanları olsun. 

a. a2 + b2 = c2 olduğunu gösterin (İpucu: a = 2n + 1 alın ve b ile
c’yi n cinsinden ifade edin.)

a

⎡⎢⎢ a2

2
⎢⎢⎣

⎢⎢⎣

⎡⎢⎢
a2

2

u

b = j a2

2
k and c = l a2

2
m

an = n ln a1 +

2
n b

an = nse1>n
- 1dan = n tan-1 

1
n

5an6
5an6

x0 = 1, xn + 1 = xn - 1

x0 = 1, xn + 1 = xn -

tan xn - 1

sec2 xn

x0 = 1, xn + 1 = xn -

xn
2

- 2
2xn

=

xn

2
+

1
xn

xn + 1 = xn -

ƒsxnd
ƒ¿sxnd

.
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b. Doğrudan hasaplayarak, veya şekle bakarak, aşağıdaki limiti
bulun

90. n!’in  n. kökü

a. ve buradan Stirling yaklaşımını kul-
lanarak (Bölüm 8, Ek Alıştırma 50a)

n’nin büyük değerleri için

b. (a) şıkkındaki yaklaşımı n = 40, 50, 60, …, hesap makineni-
zin izin verdiği kadar ilerleyerek hesaplayın.

91. a. c herhangi bir pozitif sabit olmak üzere, 
olduğunu varsayarak 

olduğunu gösterin.

b. c pozitif bir sabit ise,  olduğunu ispat-
layın. (İpucu: � = 0.001 ve c = 0.04 ise, n � N iken
u1/nc – 0u � � olmasını sağlamak için N ne kadar büyük ol-
malıdır?)

92. Fermuar teoremi Dizileri için “fermuar” teoremini ispat-
layın: ve ’nin ikisi de L’ye yakınsıyorsa: 

dizisi de L’ye yakınsar.

93. olduğunu ispatlayın.

94. olduğunu ispatlayın.

95. Teorem 2’yi ispatlayın. 96. Teorem 3’ü ispatlayın.

97–100 alıştırmalarında, dizinin azalmayan olup olmadığını ve üstten
sınırlı olup olmadığını belirleyin.

97. 98.

99. 100.

101–106 alıştırmalarındaki dizilerden hangileri yakınsaktır, hangileri
ıraksaktır? Yanıtlarınızı açıklayın.

101. 102.

103. 104.

105. an = ss -1dn
+ 1d an + 1

n b
an =

2n
- 1

3nan =

2n
- 1

2n

an = n -

1
nan = 1 -

1
n

an = 2 -

2
n -

1
2nan =

2n3n

n!

an =

s2n + 3d!
sn + 1d!

an =

3n + 1
n + 1

limn:q x1>n
= 1, sx 7 0d .

limn:q2n n = 1.

a1, b1, a2 , b2 , Á , an , bn , Á

5bn65an6

limn:q s1>ncd = 0

lim
n: q

 
ln n
nc = 0

limn:q s1>ncd = 0

2n n! L

n
e for large values of n .

limn:q s2npd1>s2nd
= 1

lim
a: q

 

j a2

2
k

l a2

2
m
.

106. Bir dizinin ilk terimi x1 = cos(1)’dir. Bunu izleyen terimler,
x2 = x1 veya cos(2), hangisi daha büyükse, ve x3 = x2 veya cos(3),
hangisi daha büyükse, (sağa doğru bu şekilde devam eder) dir.
Genel olarak,

xn+1 = max hxn, cos (n + 1)j
ile verilir.

107. Artmayan diziler Her n için an � an+1 olan bir sayı dizisi-
ne artmayan dizi denir. Her n için M � an olacak şekilde bir M
sayısı bulunabiliyorsa, dizisi alttan sınırlıdır. Böyle bir M
sayısına dizinin alt sınırı denir. Teorem 6’dan alttan sınırlı artma-
yan bir dizinin yakınsadığını ve alttan sınırlı olmayan artmayan
bir dizinin ıraksadığını çıkarın.

(Alıştırma 107’nin devamı) Alıştırma 107’nin sonucunu  kullanarak,
108–112 alıştırmalarındaki dizilerin hangilerinin yakınsadığını, han-
gilerinin ıraksadığını belirleyin.

108. 109.

110. 111.

112.

113. hhn@@(n + 1)jj dizisinin en küşük üst sınırı 1’dir. M 1’den küçük bir
sayıysa, hn@(n + 1)j’in terimlerinin eninde sonunda M’yi aşacağı-
nı gösterin. Yani, M � 1 ise, herhangi bir n � N için n@(n + 1) � M
olacak şekilde bir N tamsayısı vardır. Her n için, n@(n + 1) � 1 ol-
duğundan, bu 1’in hn@(n + 1)j için en küçük alt sınır olduğunu is-
patlar.

114. En küçük üst sınırların tekliği M1 ve M2 dizisinin en kü-
çük üst sınırları ise, M1 = M2 olduğunu gösterin. Yani, bir dizinin
iki farklı en küçük üst sınırı olamaz.

115. Pozitif sayılardan oluşan bir dizisinin, üstten sınırlıysa, ya-
kınsayacağı doğru mudur? Yanıtınızı açıklayın.

116. yakınsak bir diziyse, her pozitif � sayısına karşılık,

m � N  ve   n � N ⇒ u am – an u � �

gerektirmesi sağlanacak şekilde bir N tamsayısı bulunabileceğini
gösterin.

117. Limitlerin tekliği Dizilerin limitlerinin tek olduğunu ispatla-
yın. Yani, L1 ve L2, an → L1 ve an → L2 olacak şekilde iki sayı ise
L1 = L2 olduğunu gösterin.

118. Limitler ve alt diziler Bir dizinin terimleri verilen sıralarıyla
başka bir dizinin içinde yer alıyorlarsa, ilk diziye ikinci dizi-
nin alt dizisi deriz. Bir dizisinin iki alt dizisinin farklı
L1 
 L2 limitleri varsa, ’nin ıraksadığını ispatlayın.

119. Bir dizisi için, çift indisli terimler a2k, tek indisli terimler
a2k+1 ile gösterilmektedir. a2k → L ve a2k+1 → L ise, an → L
olduğunu ispatlayın.

120. Bir dizisi için ancak ve yalnız mutlak değerler dizisi
0’a yakınsarsa, dizinin 0’a yakınsayacağını gösterin.

5ƒ an ƒ65an6

5an6
5an6
5an6

5an6
5an6

5an6

a1 = 1, an + 1 = 2an - 3

an =

4n + 1
+ 3n

4nan =

1 - 4n

2n

an =

1 + 22n

2n
an =

n + 1
n

5an6
5an6

T

olduğunu gösterin.



Limitlerin Hesap Makinesiyle Araflt›r›lmas›
121–124 alıştırmalarında, eşitsizliğin her n � N için geçerli olmasını
sağlayacak bir N değeri bulmak için hesap makinesiyle deneyler
yapın. Eşitsizliğin limitin formel tanımının bir ifadesi olduğunu varsa-
yarsanız, her durumda hangi dizi ele alınmaktadır ve limiti nedir?

121. 122.

123. 124.

125. Newton yöntemiyle üretilen diziler Türetilebilen bir ƒ(x)
fonksiyonuna uygulanan Newton yöntemi bir x0 başlangıç değe-
riyle başlar ve bundan uygun koşullarda ƒ’nin bir sıfırına yakın-
sayan bir dizisi üretir. Dizinin tekrarlama formülü şöyledir: 

a. ƒ(x) = x2 – a, a � 0 için tekrarlama formülünün
xn+1 = (xn + a@xn)@2 olarak yazılabileceğini gösterin.

b. x0 = 1 ve a = 3 ile başlayarak, sayılar tekrar etmeye başlayın-
caya kadar dizinin birbirini izleyen terimlerini hesaplayın.
Hangi sayıya yaklaşılmaktadır. Açıklayın.

126. (Alıştırma 125’in devamı.) Alıştırma 125’in (b) şıkkını a = 3
yerine a = 2 alarak tekrarlayın.

127. ’nin tekrarlamalı bir tanımı  x1 = 1 ile başlar ve ’nin
birbirini izleyen terimlerini xn = xn–1 + cos xn–1 kuralı ile tanım-
larsanız, hızla p@2’ye yakınsayan bir dizi üretirsiniz. a. Deneyin.
b. Aşağıdaki şekli kullanarak yakınsamanın neden bu kadar hızlı
olduğunu açıklayın.

128. The Wall Street Journal’ın 15 Aralık 1992 tarihli sayısının kapak
makalesine göre, Ford Motor Şirketi, ortalama bir aracın kalıpla-
rını hazırlamak için, 1980’deki tahmini 15 saatten düşük olarak

iş saati harcamaktadır. Japonlar ise saatte bunu yapmakta-
dırlar.

Ford’un 1980’den beri gösterdiği ilerleme yılda ortalama
%6’lık bir azalma gösterir. Bu oran sürekli olursa, n yıl sonra
Ford ortalama bir aracın kalıpları için yaklaşık

saat harcayacaktır. Japonların araç başına saat harcamaya de-
vam ettiklerini varsayarsak, Ford’un onlara yetişmesi kaç yıl sürer?
Bunu iki yolla bulun:

3 12

Sn = 7.25s0.94dn

3 127 14

10

cos xn � 11

xn � 1

xn � 1
x

y

5xn6P/2

xn + 1 = xn -

ƒsxnd
ƒ¿sxnd

.

5xn6

2n>n! 6 10-7s0.9dn
6 10-3

ƒ2n n - 1 ƒ 6 10-3
ƒ2n 0.5 - 1 ƒ 6 10-3

a. dizisinin 3.5’tan küçük veya ona eşit ilk terimini bulun.

b. ƒ(x) = 7.25(0.94)x’in grafiğini çizin ve Trace kullanarak
grafiğin y = 3.5 doğrusunu nerede kestiğini bulun.

B‹LG‹SAYAR ARAfiTIRMALARI

129-140 alıştırmalarındaki dizilere aşağıdaki adımları uygularken bir
BCS kullanın.

a. Dizinin ilk yirmibeş terimini hesaplayın ve işaretleyin. Dizinin alt-
tan veya üstten bir sınırı var gibi gözükmekte midir? Size yakınsar
gibi mi, yoksa ıraksar gibi mi görünmektedir? Yakınsıyorsa, L limi-
ti nedir?

b. Dizi yakınsıyorsa, n � N için olacak şekilde bir
N tamsayısı bulun. Hangi adımdan sonra terimlerle L arasındaki
uzaklık 0.0001’den küçük kalır?

129. 130.

131.

132.

133. 134.

135. 136.

137. 138.

139. 140.

141. Bileşik faizler, yatırma ve çekmeler A0 miktarında parayı yılda
m kere birleştirilen belirli bir yıllık r faiziyle yatırırsanız ve her
birleştirme periyodunun sonunda hesaba sabit bir b miktarı ek-
lenirse (veya b � 0 ise çekilirse), n + 1 katma  periyodundan
sonra elinize geçecek para

(1)

olacaktır. 

a. A0 = 1000, r = 0.02015, m = 12 ve b = 50 ise, ilk 100 (n, An)
noktasını hesaplayın ve çizin. 5 yıl sonra hesabınızda ne
kadar para olur? yakınsar mı? sınırlı mıdır?

b. (a) şıkkını A0 = 5000, r = 0.0589, m = 12 ve b = –50 ile
tekrarlayın.

c. Dört ayda bir birleştirilen ve yıllık %4.5 veren bir mevduat
hesabına (MH) 5000 dolar yatırır ve MH’ye daha fazla
katkıda bulunmazsanız, 20.000 dolarınız olana kadar
yaklaşık kaç yıl geçer? Ya, MH yılda %6.25 veriyorsa? 

d. Herhangi bir k � 0 için, (1) denklemiyle tekrarlanarak
tanımlanan dizinin

(2)Ak = a1 +

r
m b

k

 aA0 +

mb
r b -

mb
r .

5An65An6

An + 1 = a1 +

r
m bAn + b .

an =

n41

19nan =

8n

n!

an = 1234561>nan = s0.9999dn

an =

ln n
nan =

sin n
n

an = n sin 
1
nan = sin n

a1 = 1, an + 1 = an + s -2dn

a1 = 1, an + 1 = an +

1
5n

an = a1 +

0.5
n b

n

an = 2n n

ƒ an - L ƒ … 0.01

5Sn6
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bağıntısını sağladığı gösterilebilir. A0, r, m ve b sabitlerinin
(a) şıkkında verilen değerleri için, iki dizinin de ilk 50 terimi-
nin değerlerini karşılaştırarak bunun doğruluğunu gösterin.
Sonra, doğrudan yerine koyarak, (2) denklemindeki terimle-
rin, tekrarlama formülü (1)’i sağladığını gösterin.

142. Lojistik fark denklemi

tekrarlama bağıntısına lojistik fark denklemi denir ve başlangıç
değeri a0 verildiğinde, denklem lojistik dizisini tanımlar.
Bu alıştırmada a0’ı 0 � a0 � 1  aralığında, mesela a0 = 0.3, seçe-
ceğiz.

a. r = 3@4 alın. Dizideki ilk 100 terim için (n, an) noktalarını
hesaplayıp işaretleyin. Dizi yakınsıyor gibi midir? Sizce limit
nedir? Limit a0 seçiminize bağlı mıdır?

b. 1 � r � 3 aralığında birkaç r değeri seçerek, (a) şıkkındaki
işlemleri tekrarlayın. Aralığın uç noktalarına yakın bazı nok-
talar seçtiğinizden emin olun. Çizimlerinizde gözlediğiniz di-
zilerin davranışını tanımlayın.

c. Şimdi r’nin 3 � r � 3.45 aralığının uç noktalarına yakın
değerlerinde dizinin hareketini inceleyin. r = 3 değerine
çatallanma değeri denir ve dizinin aralıktaki davranışına
çekici 2’li-döngü adı verilir. Bunun davranışı neden mantıklı
olarak tanımladığını açıklayın.

5an6

an + 1 = rans1 - and

d. Sonra r’nin 3.45 � r � 3.54 ve 3.54 � r � 3.55 aralıklarının
her birinde uç noktalara yakın değerleri için  davranışı araştı-
rın. Dizinin ilk 200 terimini işaretleyin. Kendi kelimeleriniz-
le, çizimlerinizde her aralık için gözlediğiniz davranışı ta-
nımlayın. Dizi her aralıkta kaç değer arasında salınmaktadır?
r = 3.45 ve r = 3.54 (2 ondalık basamağa yuvarlanmış) değer-
lerine de çatallanma değerleri denir, çünkü r bu değerleri
aşarken dizinin davranışı değişir.

e. Durum daha da ilginçleşir. Gerçekte, bir 3 � 3.45 � 3.54
� … � cn � cn + 1

… çatallanma değerleri dizisi bulunur, öy-
le ki cn � r < cn + 1 için lojistik dizisi çekici 2n-döngüsü
adı verilen 2n değerleri arasında salınır. Dahası, çatal-
lanma dizisi yukarıdan 3.57 ile sınırlıdır (yani yakınsar). Bir
r � 3.57 değeri seçerseniz, bir çeşit 2n-döngüsü gözlersiniz.
r = 3.5695 seçin ve 300 nokta işaretleyin.

f. r > 3.57 olduğunda neler olacağına bakalım. r = 3.65 seçin ve
’nin ilk 300 terimini hesaplayıp, işaretleyin. Terimlerin

nasıl tahmin edilemez, kaotik bir şekilde dolaştığına dikkat
edin. an + 1’in değerini an’nin değerinden bulamazsınız.

g. r = 3.65 için, birbirine yakın iki a0 başlangıç değeri seçin, ör-
neğin a0 = 0.3 ve a0 = 0.301. Her başlangıç değeriyle belirle-
nen dizilerin ilk 300 terimini hesaplayıp işaretleyin. Çizimle-
rinizde gözlediğiniz davranışları karşılaştırın. İki dizide de
aynı indisli terimlerin birbirinden uzaklaşması için kaç terim
ileri gitmeniz gerekir? Araştırmayı r = 3.75 için tekrarlayın.
Çizimlerinizin a0 seçiminize göre nasıl farklılık gösterdikle-
rini görebiliyor musunuz? Lojistik dizi başlangıç koşulu a0’a
duyarlıdır deriz.

5an6

5cn6
5an6

Sonsuz Seriler

Bir sonsuz seri

gibi bir sonsuz sayı dizisinin toplamıdır. Bu bölümün amacı böyle bir sonsuz toplamın an-
lamını kavramak ve bunu hesaplama yöntemleri geliştirmektir. Bir sonsuz seride toplan-
ması gereken sonsuz tane terim bulunduğundan ne elde edildiğini görmek için sadece top-
lamayı sürdürmekle kalamayız. Bunun yerine, dizinin ilk n terimini toplamak ve orada
durmakla ne elde ettiğimize bakarız.  İlk n terimin toplamı

sn = a1 + a2 + a3 +
Á

+ an

a1 + a2 + a3 +
Á

+ an +
Á

11.2
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sıradan sonlu bir toplamdır ve normal toplama ile hesaplanabilir. Buna n.  kısmi toplam
denir. Bölüm 11.1 de açıklanan, bir dizinin terimlerinin bir limite yaklaşması gibi, n büyü-
dükçe kısmi toplamların giderek bir limit değere yaklaşmasını bekleriz.

Örneğin, 

gibi bir ifadeye bir anlam yüklemek için başlangıçtan itibaren her defasında bir terim
toplar ve bu kısmi toplamların nasıl büyüdüklerine ilişkin bir kalıp ararız.

Kısmi toplam 
için önerilen

Kısmi toplam ifade Değer

Birinci: 1

İkinci:

Üçüncü:

n.: 

Gerçekten de bir kalıp vardır. Kısmi toplamlar n. terimi

olan bir dizi oluştururlar. Bu dizi 2’ye yakınsar, çünkü limn→∞(1@2n) = 0’dır.

sonsuz serisinin toplamı 2’dir

deriz. Bu serinin içindeki herhangi bir sonlu toplam 2’ye eşit midir? Hayır. Sonsuz sayıda
terimi gerçekten bir bir toplayabilir miyiz? Hayır. Ama yine de toplamlarını n → iken
kısmi toplamlar dizisinin limiti olarak tanımlayabiliriz, bu durumda 2 (Şekil 11.5). Diziler
ve limitler hakkındaki bilgilerimiz sonlu toplamlar çerçevesinden dışarıya çıkmamızı
sağlar.

q

  
1 1

2
1
4

1
2 1+ + + ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅

n–

sn = 2 -
1

2n - 1 .

2n
- 1

2n - 12 -
1

2n - 1 sn = 1 +
1
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+
1
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+
Á

+
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ooo     o

7
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1 +
1
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+
1
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+
1
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+
1
16

+
Á

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0
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⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎧⎪⎨⎪⎩

⎧⎨⎩
1 21/2 1/8
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fiEK‹L 11.5 uzunlukları bir bir toplanırken, toplam 2’ye yaklaşır.1, 1�2, 1�4, 1�8, Á
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Verilen bir a1 + a2 + ⋅⋅⋅ + an + ⋅⋅⋅ serisini incelerken, yakınsadığını veya ıraksadığını
bilmeyebiliriz. Her iki durumda da serileri

şeklinde yazmak için sigma gösterimini kullanmak uygundur.

Geometrik Seriler

Geometrik seriler a ve r sabit reel sayılar ve  a 
 0 olmak üzere,

şeklindeki serilerdir. r oranı,

serisindeki gibi pozitif, veya

serisindeki gibi negatif olabilir.
r = 1 ise, (1) denklemindeki serinin n. kısmi toplamı

sn = a + as1d + as1d2
+

Á
+ as1dn - 1

= na ,

1 -
1
3

+
1
9

-
Á

+ a- 1
3
bn - 1

+
Á .

1 +
1
2

+
1
4

+
Á

+ a1
2
bn - 1

+
Á ,

a + ar + ar2
+

Á
+ arn - 1

+
Á

= a
q

n = 1
 arn - 1

a
q

n = 1
 an, a

q

k = 1
 ak, or a  an

TANIMLAR Sonsuz Seriler, n.inci Terim, K›smi Toplam, Yak›nsar, Toplam 
Bir sayı dizisi verilmiş olsun. 

şeklindeki bir ifadeye bir sonsuz seri denir. an sayısı serinin n. terimidir. 

ile tanımlanan dizisine serinin kısmi toplamlar dizisi denir.  sn sayısı  n.
kısmi toplam dır. Kısmi toplamlar dizisi bir L limitine yakınsıyorsa, seri
yakınsaktır der ve toplamının L olduğunu söyleriz. Bu durumda, ayrıca

yazarız. Serinin kısmi toplamlar dizisi yakınsamıyorsa, seri ıraksaktır deriz.

a1 + a2 +
Á

+ an +
Á

= a
q

n = 1
 an = L .

5sn6
 o

sn = a1 + a2 +
Á

+ an = a
n

k = 1
 ak

 o

  s2 = a1 + a2

  s1 = a1

a1 + a2 + a3 +
Á

+ an +
Á

5an6
TARİHSEL BİYOGRAFİ

Blaise Pascal
(1623–1662)

1’den ’a kadar
toplam
anlaşıldığında
yararlı bir kısaltma

q

veya



u ru � 1 ise, a + ar + ar2 + ⋅⋅⋅ + arn–1 + ⋅⋅⋅ geometrik serisi a@(1 – r)’ye yakınsar. 

u ru � 1 ise, seri ıraksar.

a
q

n = 1
 arn - 1

=
a

1 - r
, ƒ r ƒ 6 1.

olur ve seri ıraksar, çünkü, a’nın işaretine bağlı olarak, limn→∞ sn = �∞ olur. r = –1 ise,
seri ıraksar, çünkü n. kısmi toplamlar a ile 0 arasında değişip dururlar. uru 
 1 ise, serinin
yakınsaklığını veya ıraksaklığını aşağıdaki gibi inceleyebiliriz:

u ru � 1 ise, n → ∞ iken rn → 0  (Bölüm 11.1’deki gibi) ve sn → a@(1 – r) bulunur. ur u � 1
ise urn u → ∞ olur ve seri ıraksar.

 sn =

as1 - rnd
1 - r

, sr Z 1d .

 sns1 - rd = as1 - rnd
 sn - rsn = a - arn

 rsn = ar + ar2
+

Á
+ arn - 1

+ arn

 sn = a + ar + ar2
+

Á
+ arn - 1
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sn’den rsn’yi çıkarın. Sağdaki
terimlerin çoğu birbirini götürür.
Çarpanlarına ayırın.

r ≠ 1 ise, sn’yi çözebiliriz.

sn’yi r ile çarpın.

Bir geometrik serinin ne zaman yakınsadığını veya ıraksadığını ve nereye yakınsadı-
ğını belirledik. Bundan sonraki birkaç bölümde göreceğimiz gibi çoğunlukla bir serinin
nereye yakınsadığını bilmeksizin yakınsak olduğunu belirleyebiliriz. Bir geometrik serinin
toplamını veren   a@(1 – r) formülü sadece ifadesindeki toplama indisi   n = 1
(veya  seriyi şeklinde yazarsak n = 0) ile başladığında uygulanabilir. 

ÖRNEK 1 n = 1 ile Bafllayan ‹ndis

a = 1@ 9  ve  r = 1@3 ile oluşturulan geometrik seri

şeklindedir.

ÖRNEK 2 n = 0 ile Bafllayan ‹ndis

serisi, a = 5 ve r = –1@4 ile bir geometrik seridir. Bu seri

değerine yakınsar.

ÖRNEK 3 Z›playan Bir Top

Bir topu a metre yüksekten düz bir yüzeye bırakıyorsunuz. Top bir h yüksekliğinden düş-
tükten sonra her yüzeye çarptığında, bir rh yüksekliğine zıplıyor. Burada r pozitif, fakat
1’den küçüktür. Topun yukarı ve aşağı aldığı toplam yolu bulun (Şekil 11.6).

a
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1 + s1>4d
= 4.
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Çözüm Toplam mesafe

olarak bulunur. Örneğin, a = 6 m ve r = 2@3 ise, toplam mesafe

olur.

ÖRNEK 4 Tekrarlanan Ondal›k Basamaklar

Tekrarlanan 5.232323… ondalık basamakları iki tamsayının oranı olarak ifade edin. 

Çözüm

Ne yazık ki, yakınsak bir geometrik serininki gibi formüller çok nadirdir ve çoğunlukla bir
serinin toplamının bir tahminiyle yetinmek zorunda kalırız (bu konu daha sonra ince-
lenecek). Ancak, aşağıdaki örnek toplamı kesin olarak bulabildiğimiz başka bir durumdur.

ÖRNEK  5 Geometrik Olmayan Fakat Teleskopik Olan Seriler

serisinin toplamını bulun.

Çözüm Kısmi toplamlar dizisinde, sk için bir formül verecek bir kalıp ararız. Anahtar,

kısmi kesirler ayrışımındadır. Buradan, 

ve 

elde edilir. Parantezleri kaldırıp, zıt işaretli terimleri sadeleştirirsek,

buluruz.
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a

FIGURE 11.6 (a) Örnek 3, her zıplamanın
yüksekliği bir r çarpanı ile  azalıyorsa,
zıplayan bir topun aldığı toplam yolu
hesaplamak için bir geometrik serinin nasıl
kullanılacağını göstermektedir. (b)
Zıplayan bir topun stroboskobik bir
fotoğrafı.

(b)



Artık, k → ∞ iken, sk → 1 olduğunu görüyoruz. Seri yakınsar ve toplamı 1’dir. :

Iraksak Seriler 

Bir serinin yakınsak olmamasının bir nedeni terimlerinin giderek küçülmeyişidir. 

ÖRNEK 6 Her Say›y› Aflan K›smi Toplamlar

(a)

serisi ıraksar, çünkü kısmi toplamlar her L sayısından daha büyüktür. n = 1’den sonra,
sn = 1 + 4 + 9 + ⋅⋅⋅ + n2 kısmi toplamı n2’den büyük olur.

(b)

serisi ıraksar, çünkü kısmi toplamlar önceden belirlenen her sayıyı aşar. Her terim
1’den büyüktür, dolayısıyla, n terimin toplamı n’den büyük olur.

Iraksakl›k ‹çin n. Terim Testi

serisi yakınsaksa, limn→∞ an’nin sıfıra eşit olması gerektiğine dikkat edin. Ne-
denini anlamak için, S serinin toplamını temsil etsin ve sn = a1 + a2 + ⋅⋅⋅ + an de n. kısmi
toplam olsun. n büyükken, hem sn hem de sn – 1 S’ye yakındır, dolayısıyla farkları, an sıfıra
yakındır. Daha düzgün olarak,

an = sn – sn – 1 →     S – S = 0

yazılabilir. 
Bunlar aşağıdaki teoremi getirir.

gq

n=1 an

a
q

n = 1
 
n + 1

n =
2
1

+
3
2

+
4
3

+
Á

+
n + 1

n +
Á

a
q

n = 1
 n2

= 1 + 4 + 9 +
Á

+ n2
+

Á

a
q

n = 1
 

1
nsn + 1d

= 1.

766 Bölüm 11: Sonsuz Diziler ve Seriler

Diziler için
Fark Kuralı

TEOREM 7

yakınsıyorsa, an → 0 olur.a
q

n = 1
 an

Teorem 7, Örnek 6 da ortaya çıkan ıraksaklık çeşidini belirlemek için bir teste yol açar.

Dikkat
Teorem 7, an → 0 ise ’nin
yakınsayacağını söylemez. an → 0 iken
bir serinin ıraksaması mümkündür.

gq

n=1 an

Iraksaklık için n. Terim Testi

yoksa veya sıfırdan farklıysa, ıraksar.a
q

n = 1
 anlim

n: q

 an
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ÖRNEK 7 n. terim testini uygulayarak afla¤›dakileri bulabiliriz:

(a) ıraksar, çünkü  

(b) ıraksar, çünkü  

(c) ıraksar, çünkü  yoktur

(d) ıraksar, çünkü  dır.

ÖRNEK 8 , Fakat Seri Iraksar.

Terimlerin toplamları 1 olan kümelere gruplandığından, dolayısıyla kısmi toplamlar sınır-
sız olarak büyüdüğünden

2 terim 4 terim 2n terim

serisi ıraksar. Halbuki serinin terimleri sıfıra yakınsayan bir dizi oluştururlar. Bölüm
11.3’teki Örnek 1, harmonik serinin de aynı biçimde davrandığını gösterir.  

Serileri Birlefltirmek

Elimizde iki yakınsak seri bulunuyorsa, bu serileri terim terim toplayabilir, terim terim
çıkarabilir veya bunları sabitlerle çarparak yakınsak yeni seriler  elde edebiliriz.

(''''')'''''*('''')''''*(')'*

1 +
1
2

+
1
2

+
1
4

+
1
4

+
1
4

+
1
4

+
Á

+
1
2n +

1
2n +

Á
+

1
2n +

Á

an : 0

limn:q 
-n

2n + 5
= -

1
2

Z 0.a
q

n = 1
 

-n
2n + 5

limn:qs -1dn + 1
a
q

n = 1
 s -1dn + 1

n + 1
n : 1a

q

n = 1
 
n + 1

n

n2 : qa
q

n = 1
 n2

TEOREM 8
ve yakınsak serilerse, aşağıdaki kurallar geçerlidir.

1. Toplam Kuralı:

2. Fark Kuralı:

3. Sabitle Çarpım Kuralı: gkan = kgan = kA sAny number kd .

gsan - bnd = gan - gbn = A - B

gsan + bnd = gan + gbn = A + B

gbn = Bgan = A

‹spat Seriler için bu üç kural, diziler için verilen Bölüm 11.1, Teorem 1’deki benzer kural-
lardan çıkar. Serilerin Toplam Kuralı’nı ispatlamak için,

olsun. Bu durumda,  ’nin kısmi toplamları

olur. 

 = An + Bn .

 = sa1 +
Á

+ and + sb1 +
Á

+ bnd
 sn = sa1 + b1d + sa2 + b2d +

Á
+ san + bnd

gsan + bnd

An = a1 + a2 +
Á

+ an, Bn = b1 + b2 +
Á

+ bn .

(Herhangi bir k)



An → A ve Bn → B olduğundan, dizilerin Toplam Kuralından sn → A + B elde ederiz. Fark
Kuralı’nın ispatı da benzerdir. 

Serilerin Sabitle Çarpım Kuralını ispatlamak için, ’nin kısmi toplamlarının,
dizilerin Sabitle Çarpım Kuralından kA’ya yakınsayan

serisini oluşturduklarına dikkat edin.
Teorem 8’in sonuçları olarak şunları buluruz:

1. Iraksak bir serinin sıfırdan farklı sabit bir katı ıraksar.

2. yakınsıyor ve ıraksıyorsa, hem hem de ıraksar.

İspatları atlıyoruz.

D‹KKAT ve serilerinin ikiside ıraksak iken serisinin yakınsayabildi-
ğini hatırlayın. Örneğin, = 1 � 1 � 1 � ��� ve = (–1) � (–1) � (–1) � ���

ıraksarlar oysa = 0 � 0 � 0 � ��� sıfıra yakınsar.

ÖRNEK 9 Aşağıdaki serilerin toplamlarını bulun.

(a)

(b)

Terim eklemek veya ç›karmak
Bir seriye her zaman, serinin yakınsaklığını veya ıraksaklığını değiştirmeden, sonlu sayıda
terim ekleyebilir veya sonlu sayıda terim çıkartabiliriz, ancak yakınsaklık durumunda bu
genellikle toplamı değiştirir.  yakınsıyorsa, herhangi bir k � 1 için,  de
yakınsar ve

yazılabilir. Tersten söylersek, herhangi bir k � 1 için yakınsıyorsa, de
yakınsar. Yani, 

gq

n=1 angq

n=k an
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q

n = k
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q
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2n - 1 -
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6n - 1 b

gsan + bnd
gbngan

gsan + bndgbngan

gsan - bndgsan + bndgbngan

sn = ka1 + ka2 +
Á

+ kan = ksa1 + a2 +
Á

+ and = kAn ,

gkan
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Fark Kuralı

a = 1 ve r = 1@2, 1@6 ile geometrik seriler

Sabitle Çarpım Kuralı

a = 1 ve r = 1@2 ile bir geometrik seri
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ve

olur.

Yeniden ‹ndisleme

Terimlerinin sırasını korudukça, herhangi bir seriyi, yakınsaklığını değiştirmeden yeniden
indisleyebiliriz. İndisin başlangıç değerini h birim yükseltmek için, an’nin formülünde n
yerine n – h yazın:

İndisin başlangıç değerinin h birim azaltmak içinse, an’nin formülünde n yerine n + h
yazın:

Bu yatay bir kayma gibi çalışır. Bunu, bir geometrik seride n = 1 indisi yerine n = 0 indisi
ile başlamakta gördük, fakat herhangi başka bir başlangıç indisi de kullanabiliriz. Genel-
likle basit ifadeler veren indislemeleri tercih ederiz.

ÖRNEK 10 Bir Geometrik Seriyi Yeniden ‹ndislemek

geometrik serisini

şeklinde yazabiliriz. Hangi indislemeyi  seçersek seçelim kısmi toplamlar aynı kalır.      
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TARİHSEL BİYOGRAFİ

Richard Dedekind
(1831–1916)

ALIfiTIRMALAR 11.2

n. K›smi Toplamlar› Bulmak
1–6 alıştırmalarında, her serinin n.inci kısmi toplamı için bir formül
bulun ve bunu, seri yakınsaksa, serinin toplamını bulmak için kullanın.

1.

2.

3.

4. 1 - 2 + 4 - 8 +
Á

+ s -1dn - 1 2n - 1
+

Á

1 -

1
2
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1
4

-

1
8
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9
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27
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+

2
3n - 1 +

Á

5.

6.

Geometrik Terimli Seriler
7–14 alıştırmalarında, her serinin ilk birkaç terimini yazarak serilerin
nasıl başladığını gösterin. Serinin toplamını bulun.

7. 8. a
q
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9. 10.

11. 12.

13. 14.

Teleskopik Seriler 
15–22 alıştırmalarındaki her serinin toplamını kısmi kesirler kulla-
narak bulun..

15. 16.

17. 18.

19. 20.

21.

22.

Yak›nsakl›k veya Iraksakl›k
23–40 alıştırmalarındaki serilerin hangileri yakınsak hangileri ırak-
saktır? Yanıtınızı açıklayın. Yakınsak serilerin toplamını bulun.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

Geometrik Seriler
41–44 alıştırmalarındaki serilerin her birinde, a ve r’yi bulmak için
serinin ilk birkaç terimini yazın ve serinin toplamını bulun. Sonra
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4na

q

n = 1
 
7
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eşitsizliğini x cinsinden ifade ederek eşitsizliğin sağlandığı ve
serinin yakınsak olduğu x değerlerini bulun.

41. 42.

43. 44.

45–50 alıştırmalarında, verilen geometrik serinin yakınsak olduğu x
değerlerini bulun. Ayrıca, x’in bu değerlerinde serilerin toplamını
(x’in bir fonksiyonu olarak) bulun.

45. 46.

47. 48.

49. 50.

Tekrarlanan Ondal›k Basamaklar 
51–58 alıştırmalarındaki sayıların herbirini iki tamsayının oranı olarak
ifade edin.

51.

52.

53.

54. 0.‚d = 0.dddd … d bir basamaklıdır.

55.

56.

57.

58.

Teori ve Örnekler
59. Örnek 5’teki seri

olarak da yazılabilir. Bu seriyi (a) n = –2, (b) n = 0, (c) n = 5 ile
başlayan birer seri olarak yazın.

60. Örnek 6’daki seri

olarak da yazılabilir. Bu seriyi (a) n = –1, (b) n = 3, (c) n = 20 ile
başlayan birer seri olarak yazın.

61. Sıfırdan faklı terimlerden oluşan ve toplamları

a. 1 b. –3 c. 0

olan sonsuz seriler kurun. 

62. (Alıştırma 61’in devamı) İstediğiniz sayıya yakınsayan sıfırdan
farklı terimli sonsuz bir seri kurabilir misiniz? Açıklayın.

63. Örnekle,  ve yakınsak olsa ve hiçbir bn sıfır olmasa
bile, ’nin ıraksayabileceğini gösterin.gsan>bnd

gbngan

a
q

n = 1
 

5
nsn + 1d

and a
q

n = 0
 

5
sn + 1dsn + 2d

.

a
q

n = 1
 

1
sn + 1dsn + 2d

and a
q

n = -1
 

1
sn + 3dsn + 4d

.

3.142857 = 3.142857 142857 Á

1.24123 = 1.24 123 123 123 Á

1.414 = 1.414 414 414 Á

0.06 = 0.06666 Á

0.7 = 0.7777 Á

0.234 = 0.234 234 234 Á

0.23 = 0.23 23 23 Á

a
q

n = 0
sln xdn

a
q

n = 0
 sinn x

a
q

n = 0
 a- 1

2
bn

sx - 3dn
a
q

n = 0
s -1dnsx + 1dn

a
q

n = 0
s -1dnx-2n

a
q

n = 0
2nxn

a
q

n = 0
 
s -1dn

2
 a 1

3 + sin x
bn

a
q

n = 0
3 ax - 1

2
bn

a
q

n = 0
s -1dnx2n

a
q

n = 0
s -1dnxn

ƒ r ƒ 6 1

770 Bölüm 11: Sonsuz Diziler ve Seriler

ve

ve



11.2 Sonsuz Seriler 771

64. ’nin AB’ye eşit olmadan yakınsayabileceğini gösterecek
yakınsak ve geometrik serisi bulun.

65. Örnekle, , 
 0 olsa ve hiçbir bn sıfır olmasa
bile, ’nin A@B’den farklı bir sayıya yakınsayabileceğini
gösterin.

66. yakınsıyorsa ve her n için an � 0 ise, �(1@an) hakkında bir
şey söylenebilir mi? Yanıtınızı açıklayın.

67. Iraksak bir seriye sonlu sayıda terim eklerseniz veya ıraksak bir
seriden sonlu sayıda terim çıkarırsanız ne olur? Yanıtınızı
açıklayın.

68. yakınsak ve ıraksaksa, terim-terim toplamları  �(an + bn)
hakkında bir şey söylenebilir mi? Yanıtınızı açıklayın.

69. Aşağıdaki koşullarda, 5 sayısına yakınsayan bir 
geometrik serisi kurun.

a. b.

70.

olmasını sağlayacak b değerini bulun.

71. Hangi r değerlerinde

sonsuz serisi yakınsar? Yakınsak serinin toplamını bulun.

72. Yakınsak bir seri yerine sn kısmi toplamlarından birini yazmanın
vereceği (L – sn) hatasının arn@(1 – r) olduğunu gösterin.

73. Bir top 4 m yükseklikten bırakılmaktadır. h metrelik yükseklikten
kaldırıma her çarptığında 0.75h yüksekliğine sıçramaktadır. Topun
aşağı ve yukarı aldığı toplam mesafeyi bulun.

74. (Alıştırma 73’ün devamı) Alıştırma 73’teki topun hareket ettiği
toplam süreyi saniye olarak bulun. (İpucu: s = 4.9t2 formülü

verir.)

75. Aşağıdaki şekil bir kareler dizisinin ilk beşini göstermektedir. En
dıştaki karenin alanı 4 m2’dir. Diğer her kare kendinden önceki
karelerin kenarlarının orta noktaları birleştirilerek oluşturulmuş-
tur. Tüm karelerin alanlarının toplamını bulun. 

76. Aşağıdaki şekil yarım çember sıralarından oluşan bir dizinin ilk
üç sırasını ve dördüncü sırasının bir bölümünü göstermektedir. n.
sırada yarıçapları 1@2n olan 2n yarım çember vardır. Tüm yarım
çemberlerin alanlarının toplamını bulun.

t = 2s>4.9 .

1 + 2r + r2
+ 2r3

+ r4
+ 2r5

+ r6
+

Á

1 + eb
+ e2b

+ e3b
+

Á
= 9.

a = 13>2.a = 2

garn - 1

gbngan

gan

gsan>bnd
B = gbnA = gan

B = gbnA = gan

gan bn

77. Helga von Koch’un kar tanesi eğrisi Helga von Koch’un kar
tanesi eğrisi sonlu bir alanı sınırlayan sonsuz uzunluklu bir eğri-
dir. Bunun neden böyle olduğunu anlamak için, eğrinin kenarları
1 uzunluğunda olan bir eşkenar üçgenle başlatıldığını varsayın.

a. n. eğri Cn’nin uzunluğu Ln’yi bulun ve limn→∞ Ln = 
olduğunu gösterin.

b. Cn’nin çevrelediği An alanını bulun ve limn→∞ An’yi
hesaplayın.

78. Aşağıdaki şekil  ’nin 2’den küçük olduğunun formel
olmayan bir ispatını verir. Ne olduğunu açıklayın. (Kaynak:
“Convergence with Pictures”, P.J: Rippon, American Mathemati-
cal Monthly, Vol. 93, No. 6, 1986, s. 476-478.)
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‹ntegral Testi   

Elimizde bir �an serisi varsa, iki soru sorarız:

1. Seri yakınsar mı?

2. Yakınsarsa, toplamı nedir?

Bu bölümün geri kalanının çoğu ilk soruya ayrılmıştır ve bu bölümde, ge-
nelleştirilmiş integralinin yakınsaklığına bir bağlantı kurarak, bu soruyu cevaplıyoruz. Fa-
kat pratik bakımdan, ikinci soru da aynı derecede önemlidir ve buna daha sonra döneceğiz. 

Bu ve bundan sonraki iki alt bölümde, negatif terimler içermeyen serileri inceleyece-
ğiz. Bu kısıtlamanın nedeni, bu serilerin kısmi toplamlarının azalmayan diziler oluşturma-
sı ve üstten sınırlı azalmayan dizilerin daima yakınsamasıdır. (Bölüm 11.1, Teorem 6). Te-
rimleri negatif olmayan bir serinin yakınsadığını göstermek için, sadece kısmi
toplamlarının üstten sınırlı olduklarını göstermemiz gerekir.

Bu yaklaşımın söz konusu serinin toplamını bulmadan yakınsaklığını belirlemesi, ilk
bakışta bir çekingenlik yaratabilir. Elbette, serilerin toplamlarını doğrudan kısmi toplam-
ların formüllerinden hesaplamak daha iyidir. Fakat birçok durumda, bu tip formüller bulu-
namaz ve bunların yokluğunda, önce yakınsaklığı doğrulamak, sonra da toplama yaklaşım
yapmaktan oluşan iki adımlı işleme dönmek zorunda kalırız.

Azalmayan K›smi Toplamlar

’nin, her n için an � 0 olacak şekilde bir sonsuz seri olduğunu varsayın. Bu durumda,
her kısmi toplam kendinden öncekine eşit veya ondan büyüktür, çünkü sn+1 = sn + an’dir:

s1 � s2 � s3 � ⋅⋅⋅ � sn � sn+1 � ⋅⋅⋅
Kısmi toplamlar azalmayan bir dizi oluşturduklarından dolayı, Azalmayan Dizi Teoremi
(Bölüm 11.1, Teorem 6) serinin ancak ve yalnız kısmi toplamları üstten sınırlıysa yakınsa-
yacağını söyler.

gq

n=1 an

1
q

1  ƒsxd dx .

11.3

Teorem 6’n›n Sonucu
Negatif terimler içermeyen bir serisi ancak ve yalnız kısmi toplamları
üstten sınırlıysa yakınsar.

gq

n=1 an

ÖRNEK 1 Harmonik Seri

serisine harmonik seri denir. Harmonik seri ıraksar, fakat n. Terim Testinden dolayı
değildir. n.inci terim, 1@n, sıfıra gider fakat seri yine de ıraksaktır. Iraksamanın nedeni
kısmi toplamlarının bir üst sınırının olmamasıdır. Nedenini anlamak için, serideki terim-
leri aşağıdaki şekilde gruplandırın:

7  8
16 =

1
27  48 =

1
27  24 =
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2

('''''')''''''*(''''')'''''*('')''*
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1
8
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9
+

1
10

+
Á

+
1
16
b +

Á.

a
q

n = 1
 
1
n = 1 +

1
2

+
1
3

+
Á

+
1
n +

Á
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İlk iki terimin toplamı 1.5’tir. Sonraki iki terimin toplamı ise, 1@4 + 1@4 = 1@2’den büyük
olan 1@3 + 1@4’tür. Bundan sonraki dört terimin toplamı ise, 1@5 + 1@6 +1@7 + 1@ 8’dir ki,
bu da 1@8 + 1@8 + 1@8 + 1@8 = 1@2’den büyüktür. Sonraki sekiz terimin toplamı
1@9 + 1@10 + 1@11 + 1@12 + 1@13 + 1@14 + 1@15 + 1@16’dır ki, bu da 8@16 = 1@2’den
büyüktür. Daha sonraki 16 terimin toplamı 16@32 = 1@2’den büyüktür ve toplam böyle de-
vam eder. Genel olarak, 1@2n + 1 ile biten 2n terimin toplamı, 2n@2n + 1 = 1@2’den büyüktür.
Kısmi toplamlar dizisi üstten sınırlı değildir: n = 2k ise, sn kısmi toplamı k@2’den büyüktür.
Harmonik seri ıraksar.

‹ntegral Testi

İntegral Testini harmonik seriyle ilişkili, fakat n. terimi 1@n yerine 1@n2 olan bir seriyle
tanıtacağız.

ÖRNEK 2 Aşağıdaki seri yakınsar mı?

Çözüm ’nin yakınsaklığını, ile karşılaştırarak belirleriz. Karşı-
laştırmayı yürütmek için, serinin terimlerini ƒ(x) = 1@x2 fonksiyonunun değerleri olarak
düşünür ve bu değerleri y = 1@x2 eğrisinin altındaki dikdörtgenlerin alanları olarak yorum-
larız. 

Şekil 11.7’den görüldüğü gibi,

bulunur. Yani,  ’nin kısmi toplamları üstten sınırlıdır (2 ile) ve seri yakınsar.
Serinin toplamı p2@6 � 1.64493’tür (Bölüm 11.11 de Alıştırma 16’ya bakın).

gq

n=11>n2

 6 1 + 1 = 2.

 6 1 +

L

q

1
 
1
x2 dx

 6 ƒs1d +

L

n

1
 
1
x2 dx

 = ƒs1d + ƒs2d + ƒs3d +
Á

+ ƒsnd

 sn =
1
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1
22 +

1
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Á
+

1
n2

1
q

1 s1>x2d dx .gq

n=1s1>n2d

a
q

n = 1
 
1
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1
4

+
1
9

+
1
16

+
Á

+
1
n2 +

Á

0 1

 f(x) �     'nin grafiği

(1, f(1)) 

(2, f(2))

(3, f(3))
(n, f(n))

2 3 4 … n � 1 n …

1
x2

1
n2

1
22

1
12

1
32

1
42

x

y

fiEK‹L 11.7 ’nin grafiği
altındaki dikdörtgenlerin alanlarının
toplamı grafiğin altındaki alandan
küçüktür  (Örnek 2).

f (x) = 1>x2

Bölüm 8.8, Örnek 3’te olduğu
gibi, ’dir.1

q

1 s1>x2d dx = 1 .

TEOREM 9 ‹ntegral Testi 
pozitif terimli bir dizi olsun ƒ,  her x � N (N pozitif bir tamsayı) için x’in

sürekli, pozitif ve azalan bir fonksiyonu olmak üzere,  an = ƒ(n) olduğunu
varsayın. Bu durumda, serisi ve integralinin ikisi de ya
yakınsar, ya da ıraksar. 

1
q

N  ƒsxd dxgq

n=N an

5an6

‹spat Testi  N = 1 için kullanacağız. Genel  N değerleri için ispat benzerdir.
ƒ’nin, her n için ƒ(n) = an olmak üzere, azalan bir fonksiyon olduğu varsayımıyla işe

başlarız. Bu bizi, Şekil 11.8(a)’da, alanları a1, a2, …, an olan dikdörtgenlerin, birlikte,

Dikkat
Yakınsaklık durumunda serinin ve
integralin değerlerinin aynı olması
gerekmez. Örnek 2’de gördüğümüz gibi,

iken
’dir.1

q

1 s1>x2d dx = 1.
p2>6gq

n=1s1>n2d =



x = 1’den x = n + 1’e kadar y = ƒ(x) eğrisinin altında kalan alandan daha fazla alan
kapladıklarını gözlemeye götürür. Yani,

Şekil 11.8(b)’de, dikdörtgenler sağa doğru değil, sola doğru yerleştirilmişlerdir. Bir a1 için
ilk dikdörtgeni göz ardı edersek, 

olduğunu görürüz. a1’i de eklersek,

buluruz. Bu iki sonucu birleştirmek

verir. Bu eşitsizlikler her n için geçerlidir ve n → iken de geçerli kalırlar.

sonlu ise sağ taraftaki eşitsizlik  ’nin sonlu olduğunu gösterir.

sonsuz ise sol taraftaki eşitsizlik  ’nin sonsuz olduğunu gösterir. 

Dolayısıyla, seri ve integralin ikisi de ya sonludur, ya da sonsuzdur.  

ÖRNEK 3 p-Serisi

p-serisinin (p reel bir sabit)  p � 1 ise yakınsayacağını, p � 1 ise ıraksayacağını gösterin.

Çözüm p � 1 ise, ,  x’in pozitif azalan bir fonksiyonu olur. 

olduğundan, İntegral Testine göre seri yakınsaktır. p-Serisinin toplamının  1@(p – 1) ol-
madığını vurguluyoruz. Seri yakınsaktır fakat hangi değere yakınsadığını bilmiyoruz.

p � 1 ise, 1 – p � 0 ve

olur. İntegral Testi’ne göre seri ıraksaktır. 
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q
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1
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0 1 2 n3 n � 1

a1
a2

an

(a)

0 1 2 n3 n � 1

a1

a3
an

(b)

a2

x

y

x

y

y � f(x)

y � f(x)

fiEK‹L 11.8 İntegral Testinin koşullarına
uygun olarak,    serisi ve

integralinin ikisi de ya
yakınsar, ya da ıraksar.
1

q

1 ƒsxd dx
gq

n=1 an

p – 1 � 0 olduğundan
b → ∞ iken bp – 1 → ∞
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p = 1 ise, (ıraksak) harmonik seriyi buluruz:

p � 1 için yakınsaklık vardır, fakat başka her p değeri için ıraksaklık bulunur.

p = 1 ile p-serisi harmonik seridir (Örnek 1).  p-Serisi Testi harmonik serinin ancak
zorbela ıraksadığını gösterir; p’yi örneğin  1.000000001’e yükseltirsek  seri yakınsak olur!

Harmonik serinin kısmi toplamlarının sonsuza gitmesinin yavaşlığı etkileyicidir.
Örneğin, harmonik serinin kısmi toplamlarının 20’yi aşması için yaklaşık 178,482,301
terim gerekir. Hesap makinenizle bu kadar çok terimi toplamak birkaç hafta sürerdi.
(Ayrıca, Alıştırma 33b’ye bakın)

ÖRNEK 4 Yak›nsak Bir Seri

serisi,  İntegral Testine göre yakınsar. ƒ(x) = 1@(x2 + 1)  fonksiyonu x � 1 için pozitif,
sürekli ve azalandır, ve

tür. Yine serinin toplamının  p@4 olmadığını vurguluyoruz. Seri yakınsaktır, fakat toplamı-
nın değerini bilmiyoruz. 

Örnek 4’teki serinin yakınsaklığı, �1@n2 serisiyle karşılaştırma ile de gerçek-
lenebilirdi. Karşılaştırma testleri bundan sonraki bölümde incelenmektedir.

 =
p
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-
p
4

=
p
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.

 = lim
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[arctan b - arctan 1]
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1
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ALIfiTIRMALAR 11.3

Yak›nsakl›k veya Iraksakl›¤› Belirlemek
1–30 alıştırmalarındaki serilerin hangileri yakınsar, hangileri ıraksar?
Yanıtlarınızı açıklayın. (Bir yanıtı kontrol ederken, bir serinin yakın-
saklığını veya ıraksaklığını belirlemenin birden fazla yolu olduğunu
hatırlayın)
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23. 24.

25. 26.

27. 28.

29. 30.

Teori ve Örnekler
31 ve 32 alıştırmalarındaki seriler, yakınsıyorlarsa, hangi a değer-
leri için yakınsarlar?

31. 32.

33. a. Şekil 11.7 ve 11.8’deki gibi şekiller çizerek, harmonik serinin
kısmi toplamlarının aşağıdaki eşitsizlikleri sağladığını gösterin.

b. Iraksadığını bildiğimiz halde, harmonik serinin ıraksaklığının
gözlemsel bir delili yoktur. Sadece kısmi toplamlar çok yavaş
büyürler. Ne demek istediğimizi anlamak için, 13 milyar yıl
önce, evrenin yaratıldığı gün s1 = 1 ile başladığınızı ve her sa-
niye yeni bir terim eklediğinizi varsayın. Bir yılın 365-gün ol-
duğunu kabul edersek, bugün sn kısmi toplamı ne kadar olur?

34. ’in yakınsak olduğu bir x değeri var mıdır? Yanıtı-
nızı açıklayın.

35. pozitif sayılardan oluşan ıraksak bir seriyse, her n için,
bn � an olacak şekilde bir pozitif sayı serisinin bulu-
nacağı doğru mudur? Pozitif sayıların bir “en küçük” ıraksak
serisi var mıdır? Yanıtınızı açıklayın.

36. (Alıştırma 35’in devamı) Pozitif sayıların bir “en büyük” yakınsak
serisi var mıdır? Yanıtınızı açıklayın.

37. Cauchy sıklaştırma testi. Cauchy sıklaştırma testi şunu söyler:
0’a yakınsayan, pozitif terimli ve artmayan (her n için

) bir dizi olsun. Bu durumda, ancak ve yalnız 
yakınsıyorsa, yakınsar. Mesela, ıraksar, çünkü

ıraksar. Testin neden işe yaradığını açıkla-
yın.

38. Alıştırma 37’deki Cauchy sıklaştırma testini kullanarak aşağıda-
kileri gösterin.

a. ıraksar;

b. ,  ise yakınsar ve p � 1 ise ıraksar.p 7 1a
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39. Logaritmik p-serisi

a. Ancak ve yalnız  p �1 ise

integralinin yakınsak olduğunu gösterin.

b. (a) şıkkındaki sonuç

serisinin yakınsaklığı hakkında ne söyler? Yanıtınızı açıklayın.

40. (Alıştırma 39’un devamı.) Alıştırma 39’un sonucunu kullanarak
aşağıdaki serilerden hangilerinin yakınsak olduğunu  ve hangile-
rinin ıraksadık olduğunu belirleyin. Her durumda yanıtınızı des-
tekleyin.

a. b.

c. d.

41. Euler sabiti  Şekil 11.8’deki gibi grafikler n artarken

toplamı ile 

integrali arasındaki farkta fazla bir değişiklik olmayacağını belir-
tir. Bunu araştırmak için, aşağıdaki adımları izleyin.

a. Teorem 9’un ispatında  ƒ(x) = 1@x alarak

veya

olduğunu gösterin. Yani,

dizisi alttan ve üstten sınırlıdır.

b.

olduğunu gösterin ve bu sonucu kullanarak (a) şıkkındaki
dizisinin azaldığını gösterin. 5an6
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Alttan sınırlı azalan bir seri yakınsak olduğundan (Bölüm 11.1,
Alıştırma 107), (a)’da tanımlanan an sayıları yakınsar:

Değeri 0.5772…, olan g sayısına Euler sabiti denir. p ve e gibi

1 +

1
2

+
Á

+

1
n - ln n : g .

diğer özel sayıların aksine, g için daha basit formülasyon kurallı
bir ifade bulunamamıştır.

42. İntegral testini kullanarak

serisinin yakınsadığını gösterin. 

a
q

n = 0
e-n2

Karfl›laflt›rma Testleri    

Geometrik serinin, p-serisinin ve birkaç başka serinin yakınsaklıklarının nasıl belirlenece-
ğini gördük.  Daha birçok serinin yakınsaklığını, terimlerini yakınsaklığı bilinen bir seri-
nin terimleri ile karşılaştırarak test edebiliriz.  

11.4

TEOREM 10 Karfl›laflt›rma Testi 
negatif terim içermeyen bir seri olsun.

(a) N herhangi bir tamsayı olmak üzere her n � N için,  an � cn olacak şekilde 
yakınsak bir serisi varsa serisi yakınsaktır. 

(b) N herhangi bir tamsayı olmak üzere her n � N için  an � dn olacak şekilde
negatif terim içermeyen ıraksak bir serisi varsa, serisi ıraksaktır.gangdn

gangcn

gan

‹spat (a) şıkkında,  ’nin kısmi toplamları üstten  

ile sınırlıdır. Dolayısıyla, bir L � M limitiyle azalmayan bir dizi oluştururlar. 
(b) şıkkında,  ’nin kısmi toplamları üstten sınırlı değildir. Sınırlı olsalardı,
’nin kısmi toplamları 

ile sınırlı olurlardı ve ıraksamak yerine yakınsardı.

ÖRNEK 1 Karfl›laflt›rma Testini Uygulamak

(a)

serisi ıraksaktır. Çünkü;  n. terimi

ıraksak olan harmonik serinin n.inci teriminden büyüktür.
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(b)

serisi yakınsaktır. Çünkü; bütün terimleri pozitiftir ve  

serisinin karşı gelen terimlerinden küçük veya eşittir. Sol taraftaki geometrik seri
yakınsaktır ve 

tür. 3’ün, serisinin kısmi toplamları için bir üst sınır olması serinin 3’e
yakınsaması anlamına gelmez. Bölüm 11.9’da göreceğimiz gibi seri  e’ye yakınsar.

(c)

serisi yakınsaktır. Bunu görmek için ilk üç terimi ihmal ederiz ve kalan terimleri,

yakınsak olan geometrik serisinin terimleri ile karşılaştırırız. Budanmış

serinin   terimi, geometrik serinin karşı gelen 1@2n teriminden küçüktür.

Terim terime 

karşılaştırmasını görürüz. Dolayısıyla, Karşılaştırma Testinin bir uygulamasına göre
budanmış seri ve orijinal seri yakınsaktır. 

Limit Karfl›laflt›rma Testi

Şimdi, özellikle an genel terimi n’nin rasyonel fonksiyonu şeklinde olan seriler için kul-
lanışlı bir karşılaştırma testi tanıtacağız.
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TEOREM  11 Limit Karfl›laflt›rma Testi
Her  n � N (N bir tamsayı) için an � 0 ve bn � 0 olduğunu varsayın.

1. ise, ve ’nin ikisi birden yakınsak veya ıraksaktır.

2. ise ve yakınsak ise, ’de yakınsaktır.

3. ise ve ıraksak ise, ’de ıraksaktır.gangbnlim
n: q

 
an

bn
= q

gangbnlim
n: q

 
an

bn
= 0

gbnganlim
n: q

 
an

bn
= c 7 0,
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‹spat (1) şıkkını ispatlayacağız. (2) ve (3) şıkları Alıştırma 37(a) ve (b)’ye bırakılmıştır.    
c@2 � 0 olduğundan, her n için

sağlanacak şekilde bir N tamsayısı vardır. Dolayısıyla n � N için,

bulunur. yakınsak ise, de yakınsaktır ve Doğrudan Karşılaştırma Testine
göre de yakınsaktır. ıraksak ise, de ıraksaktır ve Doğrudan
Karşılaştırma Testine göre de ıraksak olur. 

ÖRNEK 2 Limit Karfl›laflt›rma Testini Kullanmak 

Aşağıdaki serilerin hangisi yakınsar, hangisi ıraksar?

(a)

(b)

(c)

Çözüm

(a) an = (2n + 1)@(n2 + 2n + 1) olsun. Büyük n değerleri için, an’nin 2n@n2 = 2@n gibi
davranmasını bekleriz, dolayısıyla bn = 1@n alırız. 

ıraksak olduğundan ve

olduğundan, Limit Karşılaştırma Testinin 1. kısmına göre ıraksaktır. bn 
 2@n’yi
de olabilirdik, fakat 1@n daha basittir.

gan
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� = c@2, L = c ve an yerine
an@bn alınmış olarak limit
tanımı



(b) an = 1@(2n – 1) olsun. Büyük n değerleri için, an’nin 1@2n gibi davranmasını bekleriz,
dolayısıyla bn = 1@2n alırız. 

yakınsak olduğundan ve

olduğundan, Limit Karşılaştırma Testinin 1. kısmına göre yakınsaktır.

(c) an = (1+ n ln n)@(n2 + 5) olsun. Büyük n değerleri için, an’nin (n ln n)@n2 = (ln n)@n
gibi davranmasını bekleriz, ki bu n � 3 için 1@n’den büyüktür, dolayısıyla bn = 1@n
alırız. 

ıraksak olduğundan ve

olduğundan, Limit Karşılaştırma Testinin 3. kısmına göre ıraksaktır.    

ÖRNEK 3 yakınsar mı?

Çözüm ln n herhangi bir pozitif c sabiti için nc’den daha yavaş büyüdüğü için (Bölüm
11.1, Alıştırma 91), yeterince büyük n değerleri için 

olmasını bekleriz. Gerçekten de, an = (ln n)@n3@2 ve  bn = 1/n5@4 alarak

buluruz. (p � 1 ile bir p-serisi) yakınsak olduğundan, Limit Karşılaş-
tırma Testinin 2. kısmına göre, yakınsak olur.gan
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ALIfiTIRMALAR 11.4

Yak›nsakl›k veya Iraksakl›¤› Belirlemek
1–36 alıştırmalarındaki serilerden hangileri yakınsar, hangileri ırak-
sar? Yanıtlarınızı açıklayın. 

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25. 26.

27. 28.

29. 30. 31.

32. 33. 34.

35. 36.

Teori ve Örnekler
37. Limit Karşılaştırma Testinin (a) 2. kısmını ve (b) 3. kısmını ispat-

layın.
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38. negatif olmayan sayılardan oluşan yakınsak bir seri ise,
�∞

n = 1 (an@n) için ne söylenebilir ? Açıklayın.

39. n � N (N bir tamsayı) için, an � 0 ve bn � 0 olduğunu varsayın.
limn→∞ (an@bn) = � ve yakınsak ise, hakkında bir şey
söylenebilir mi? Yanıtınızı açıklayın.

40. negatif olmayan sayılardan oluşan yakınsak bir seri ise,
’nin de yakınsak olduğunu ispatlayın.

B‹LG‹SAYAR ARAfiTIRMALARI

41.

serisi ıraksak mı veya yakınsak mı hala bilinmemektedir. Bir BCS
kullanarak, aşağıdaki adımları izleyip serinin davranışını araştırın.

a.

kısmi toplamlar dizisini tanımlayın. k → � iken sk’nın limitini
bulmaya kalkarsanız ne olur? BCS’niz bu limit için kapalı bir
ifade verir mi?

b. Kısmi toplamlar dizisinin ilk 100 (k, sk) noktasını işaretleyin.
Noktalar yakınsıyor gibi mi? Limitin ne olmasını beklersiniz?

c. Sonra ilk 200 (k, sk) noktasını işaretleyin. Davranışı kendi
kelimelerinizle tartışın.

d. İlk 400 (k, sk) noktasını işaretleyin. k = 355 iken ne olur?
355@113 sayısını hesaplayın. Hesabınızdan k = 355’de ne ol-
duğunu açıklayın. k’nın hangi değerleri için bu davranışın tek-
rarlanmasını beklersiniz?

Mazes for the Mind by Clifford A. Pickover, St. Martin’s Press,
Inc., New York, 1992’de bu seri hakkında ilginç bir tartışma bula-
caksınız.
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n = 1
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n3 sin2 n
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n3 sin2 n
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gan

gbngan

gq
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Kök ve Oran Testleri    
Oran Testi, an + 1@an oranını inceleyerek, bir serinin büyüme (veya azalma ) oranını  ölçer.
Bir �arn geometrik serisi için, bu oran bir sabittir ((arn + 1)@(arn) = r), ve seri ancak ve yal-
nız oranı mutlak değerce 1’den küçükse yakınsaktır. Oran Testi bu sonucu genişleten kuv-
vetli bir kuraldır. Bunu bir sonraki sayfada Karşılaştırma Testini kullanarak ispat edeceğiz. 

11.5



‹spat

(a) R� 1. r,   r ile 1 arasında bir sayı olsun. Bu durumda � = r – r sayısı pozitiftir. 

olduğundan, n yeterince büyükken, mesela her n � N için, an + 1@an oranı r’nun �
civarında bulunmalıdır. Özel olarak

olur. Yani,  

Bu eşitsizlikler serimizin terimlerinin, N. terimden sonra  r � 1 oranı ile bir geometrik
serinin terimlerinden daha hızlı sıfıra yaklaştığını gösterir. Daha kesin olarak,
n = 1, 2, …, N için cn = an ve cN + 1 = raN, cN + 2 = r2aN ,…, cN + m = rmaN, … olacak
şekilde bir  serisini düşünün. Her n için, an � cn’dir ve

olur. 1 + r + r2 + ⋅⋅⋅ geometrik serisi yakınsaktır, çünkü u r u � 1’dir, dolayısıyla 
yakınsak olur. an � cn olduğundan, de yakınsak olur.

(b) Bir M indisinden sonra,

olur. Serinin terimleri n sonsuz olurken sıfıra yaklaşmazlar ve seri n. Terim Testin-
den dolayı ıraksar.

an + 1
an

7 1 and aM 6 aM + 1 6 aM + 2 6
Á .
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gan

gcn
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6 r + P = r, when n Ú N .
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TEOREM 12 Oran Testi
pozitif terimli bir seri olsun ve

olduğunu varsayın. Bu durumda,

(a) r � 1 ise, seri yakınsar.

(b) r � 1 veya r sonsuz ise, seri ıraksar.

(c) r = 1 ise, test sonuçsuzdur.

lim
n: q

 
an + 1
an

= r .

gan

n � N için

ve
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(c)

serileri, r = 1 iken, başka yakınsaklık testlerinin kullanılması gerektiğini gösterir.

İki durumda da, r = 1’dir, ama yine de birinci seri ıraksarken ikincisi yakınsar.     

Oran Testi genellikle bir serinin terimleri n’yi içeren ifadelerin faktoriyellerini veya n.
kuvveti alınmış ifadeleri içerdiği zaman etkilidir.

ÖRNEK 1 Oran Testini Uygulamak

Aşağıdaki serilerin yakınsaklığını araştırın.

(a) (b) (c)

Çözüm

(a) serisi için,

Seri yakınsar, çünkü r = 2@3,  1’den küçüktür. Bu serinin toplamının 2@3 olduğu an-
lamına gelmez. Gerçekten de,

bulunur.

(b) ise, o zaman  olur ve

buluruz. Seri ıraksar, çünkü r = 4, 1’den büyüktür.

(c) an = 4n n!n!(2n)!  ise,

olur. 
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Limit r = 1 olduğu için, Oran Testinden serinin yakınsak olup olmadığını anlaya-
mayız. Ancak, an + 1@an = (2n + 2)@(2n + 1) olduğunu fark ettiğimizde, an + 1’in her za-
man an’den büyük olduğu sonucunu çıkarırız, çünkü  (2n + 2)@(2n + 1) her zaman
1’den büyüktür. Dolayısıyla bütün terimler a1 = 2’ye eşit veya ondan büyüktür ve
n → iken, n. terim sıfıra gitmez. Seri ıraksar. 

Kök Testi

için şimdiye kadar gördüğümüz yakınsama testleri an’nin formülü oldukça basitken
işe yarar. Fakat aşağıdaki durumu düşünün.

ÖRNEK 2 olsun. yakınsar mı?

Çözüm Serinin birkaç terimini yazarız.

Bu, kesin olarak bir geometrik seri değildir. n → iken, n. terim sıfıra yaklaşır,
dolayısıyla serinin ıraksayıp ıraksamadığını bilmiyoruz. İntegral Testi pek umut verici
görünmemektedir. Oran Testi

verir. n → iken, oran büyük ile küçük değerler arasında değişir ve bir limiti yoktur. So-
ruya yanıt verecek (seri yakınsar) bir test  Kök Testidir. 
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TEOREM 13 Kök Testi
, n � N için, an � 0 olacak şekilde bir seri olsun ve

olduğunu varsayın. Bu durumda,

(a) r � 1 ise, seri yakınsar. 

(b) r � 1 veya r sonsuz ise, seri ıraksar.

(c) r = 1 ise, test sonuçsuzdur.

lim
n: q

2n an = r .

gan

‹spat

(a) r + � � 1 olacak kadar küçük bir � � 0 seçin.  olduğundan, 
terimleri eninde sonunda r’ya �’dan daha yakın olurlar. Diğer bir deyişle, 

n � M iken       

olacak şekilde bir M � N indisi bulunur. 

2n an 6 r + P when n Ú M .

2n an2n an : r ,R<1.

n tek
n çift

n tek

n çift
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n � M için     an � (r + �)n

olduğu da doğrudur. Şimdi,  oranı (r + �) � 1 olan bir geometrik
seri, yakınsar. Karşılaştırmayla,  de yakınsar ve 

yakınsar.

(b) Bir M indisinden büyük olan bütün terimler için, buluruz,
dolayısıyla n > M için  an > 1 olur. Serinin terimleri sıfıra yakınsamaz.  n. Terim Tes-
tine göre seri ıraksar.

(c) rr = 1. ve serileri, r = 1 iken, testin sonuçsuz olduğunu gös-
terir. İlk seri ıraksar ve ikinci seri yakınsar, fakat iki durumda da  ’dir. 

ÖRNEK 3 Kök Testini Uygulamak

Aşağıdaki serilerin hangisi yakınsar, hangisi ıraksar?

(a) (b) (c)

Çözüm

(a) yakınsar, çünkü   

(b) ıraksar çünkü   

(c) yakınsar, çünkü   

ÖRNEK 2 Devam›

olsun.   yakınsar mı?

Çözüm Kök Testini uygulayarak

buluruz.  Dolayısıyla, 

olur.  olduğundan (Bölüm 11.1, Teorem 5),  Sandviç Teoreminden
buluruz. Limit 1’den küçüktür, dolayısıyla Kök Testine göre, seri

yakınsar. 
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ALIfiTIRMALAR 11.5

Yak›nsakl›k veya Iraksakl›¤› Belirlemek
1–26 alıştırmalarındaki serilerin hangileri yakınsar, hangileri ıraksar?
Yanıtlarınızı açıklayın. (Yanıtlarınızı kontrol ederken, bir serinin ya-
kınsaklık veya ıraksaklığını belirlemek için birden fazla yol olabilece-
ğini hatırlayın.)

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27–38 alıştırmalarındaki formüllerle verilen serilerinin
hangileri yakınsar, hangileri ıraksar? Yanıtlarınızı açıklayın.

27.

28.

29.

30.

31. a1 = 2, an + 1 =

2
n an

a1 = 3, an + 1 =

n
n + 1

 an

a1 =

1
3

, an + 1 =

3n - 1
2n + 5

 an

a1 = 1, an + 1 =

1 + tan-1 n
n  an

a1 = 2, an + 1 =

1 + sin n
n  an

gq

n=1 an

a
q

n = 1
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n32na
q
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q
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q
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q
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q
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3nn!a
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q
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q
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2 + s -1dn

1.25n
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q

n = 1
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n bn
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q

n = 1
 
n10
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q
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n!
10na

q

n = 1
n!e-n

a
q

n = 1
n2e-n

a
q

n = 1
 
n22
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32.

33.

34.

35.

36.

37.

38.

39–44 alıştırmalarındaki serilerin hangileri yakınsar, hangileri ırak-
sar? Yanıtlarınızı açıklayın.

39. 40.

41. 42.

43.

44.

Teori ve Örnekler
45. p-serilerinde ne Oran ne de Kök Testleri yararlı olur. Bu testleri

serisinde deneyin ve iki testin de yakınsaklık hakkında bilgi ver-
mediğini gösterin.

46. Ne Oran Testinin ne de Kök Testinin aşağıdaki serinin yakınsaklı-
ğı hakkında bilgi vermediğini gösterin.

47. olsun.

yakınsar mı? Yanıtınızı açıklayın.gan

an = en>2n, if n is a prime number

1>2n, otherwise.

a
q

n = 2
 

1
sln nd p s p constantd .

a
q

n = 1
 
1
np

a
q

n = 1
 

1 # 3 # Á # s2n - 1d
[2 # 4 # Á # s2nd]s3n

+ 1d
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4n2nn!
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s2nd2a
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sn!dn

snnd2

an =
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n!sn + 1d!sn + 2d!

an =

2nn!n!
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a1 =

1
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, an + 1 = sandn + 1

a1 =

1
3

, an + 1 = 2n an

a1 =

1
2

, an + 1 =

n + ln n
n + 10

 an

a1 = 1, an + 1 =

1 + ln n
n  an

a1 = 5, an + 1 =

2n n
2

 an

n asal bir sayı ise
diğer

(p sabit)
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Alterne Seriler, Mutlak ve Koflullu Yak›nsakl›k 

Terimleri sırayla pozitif ve negatif olan serilere alterne seriler denir.
Aşağıda bunlara üç örnek vardır:

(1)

(2)

(3)

Alterne harmonik seri denilen (1) serisi, birazdan göreceğimiz gibi, yakınsaktır. r = –1@2
oranıyla bir geometrik seri olan (2) serisi – 2@[1 + (1@2)] = – 4@3’e yakınsar. (3) serisi ıraksaktır
çünkü;  n. terim sıfıra yaklaşmaz. 

Alterne harmonik serilerin yakınsaklığını Alterne Seri Testini uygulayarak göstereceğiz.

1 - 2 + 3 - 4 + 5 - 6 +
Á

+ s -1dn + 1n +
Á

 -2 + 1 -
1
2

+
1
4

-
1
8

+
Á

+

s -1dn4
2n +

Á

1 -
1
2

+
1
3

-
1
4

+
1
5 -

Á
+

s -1dn + 1

n +
Á

11.6

TEOREM 14 Alterne Seriler Testi (Leibniz Teoremi)

serisi aşağıdaki üç koşulu da sağlanırsa yakınsar:

1. un’lerin hepsi pozitiftir.

2. Her n � N için un � un + 1’dir. (N bir tamsayı).

3. un → 0.

a
q

n = 1
s -1dn + 1un = u1 - u2 + u3 - u4 +

Á

‹spat n bir çift tamsayı ise, mesela n = 2m, ilk n terimin toplamı 

olur. İlk eşitlik s2m’nin negatif olmayan terimlerin toplamı olduğunu gösterir, çünkü paran-
tez içindeki her terim pozitif veya sıfırdır. Dolayısıyla, s2m + 2 � s2m’dir ve dizisi
azalmayandır. İkinci eşitlik s2m � u1 olduğunu gösterir. azalmayan ve üstten sınırlı
olduğundan, bir limiti vardır, mesela

(4)

n bir tek tamsayı ise, örneğin n = 2m + 1, ilk n terimin toplamı s2m + 1 = s2m + u2m + 1

olur. un → 0 olduğundan,

olur ve m → iken, 

s2m + 1 = s2m + u2m + 1 → L + 0 = L (5)

bulunur. (4) ve (5)’in sonuçlarını birleştirmek verir (Bölüm 11.1,

Alıştırma 119).

lim
n: q

 sn = L

q

lim
m: q

 u2m + 1 = 0

lim
m: q

 s2m = L .

5s2m6
5s2m6

 = u1 - su2 - u3d - su4 - u5d -
Á

- su2m - 2 - u2m - 1d - u2m .

 s2m = su1 - u2d + su3 - u4d +
Á

+ su2m - 1 - u2md
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ÖRNEK 1 Alterne harmonik seri

N = 1 ile Teorem 14’ün üç koşulunu sağlar; dolayısıyla yakınsar.

Kısmi toplamların geometrik bir yorumu (Şekil 11.9),  N = 1 ile Teorem 14’ün üç
koşulu sağlandığında bir alterne serinin L limitine nasıl yakınsadığını göstermektedir.
(Alıştırma 63 sizden N � 1 durumunu  resmetmenizi isteyecektir.) x-ekseninin orijininden
başlayarak, s1 = u1 pozitif mesafesini belirtiriz. s2 = u1 – u2’e karşılık gelen noktayı bul-
mak için, u2’ye eşit bir mesafe geri gideriz. u2 � u1 olduğundan, orijinden daha geriye
gidemeyiz. Serideki işaretlere göre ileri veya geri giderek bu testere şekline devam ederiz.
Fakat n � N için, her ileri veya geriye adım bir önceki adımdan daha kısadır (veya en fazla
aynı boydadır), çünkü un + 1 � un’dir. Ve n. terim n arttıkça sıfıra yaklaştığı için, ileri veya
geri doğru attığımız adımlar giderek küçülür. L limitinin çevresinde salınırız ve salınımın
genliği sıfıra yaklaşır. L limiti herhangi iki ardışık sn ile sn + 1 toplamı arasında bulunur ve
dolayısıyla  sn’den  farkı un + 1’den daha küçük olur.

n � N için     u L – sn u � un + 1

olduğundan, yakınsak alterne serilerin toplamları hakkında yararlı tahminler yapabiliriz.

a
q

n = 1
s -1dn + 1 

1
n = 1 -

1
2

+
1
3

-
1
4

+
Á

L0

�u1

�u2

�u3

�u4

s2 s4 s3 s1

x

fiEK‹L 11.9 N = 1 için  Teorem 14’ün
hipotezlerini sağlayan bir alterne serinin
kısmi toplamları baştan itibaren limite iki
taraftan yaklaşır.

TEOREM 15 Alterne Seriler Tahmin Teoremi
alterne serisi Teorem 14’ün üç koşulunu sağlıyorsa, 

n � N için 

kısmi toplamı L’ye, mutlak değeri  un + 1’den, ilk kullanılmayan terimin
değerinden daha küçük bir hatayla yaklaşımda bulunur. Dahası, L – sn kalanının
işareti, kullanılmayan ilk teriminkiyle aynıdır.  

sn = u1 - u2 +
Á

+ s -1dn + 1un

gq

n=1 s -1dn + 1un

Kalanın işaretinin doğrulanmasını Alıştırma 53’e bırakıyoruz.

ÖRNEK 2 Teorem 15’i toplamını bildiğimiz bir seride deneyelim:

Teoreme göre, seriyi sekizinci terimde kesersek, pozitif ve 1@256’dan küçük olan bir mik-
tarı atmış oluruz. İlk sekiz terimin toplamı 0.6640625’tir. Serinin toplamı

olarak bulunur. Fark, (2@3) – 0.6640625 = 0.0026041666… pozitiftir ve
(1@256) = 0.00390625’ten daha küçüktür.

1
1 - s -1>2d

=
1

3>2 =
2
3

.

a
q

n = 0
s -1dn 

1
2n = 1 -

1
2

+
1
4

-
1
8

+
1
16

-
1
32

+
1
64

-
1

128
  +

1
256

-
Á .

--
--

--
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Mutlak ve Koflullu Yak›nsakl›k 

TANIM Mutlak Yak›nsakl›k  
mutlak değerler serisi yakınsak ise serisi mutlak olarak   

yakınsar (veya mutlak yakınsaktır).
gang ƒ an ƒ ,

geometrik serisi mutlak olarak yakınsar, çünkü kendisine karşılık gelen 

mutlak değerler serisi yakınsaktır. Alterne harmonik seri mutlak yakınsak değildir. Kendi-
sine karşı gelen mutlak değerler serisi (ıraksak) harmonik seridir.

1 +
1
2

+
1
4

+
1
8

+
Á

1 -
1
2

+
1
4

-
1
8

+
Á

TANIM Koflullu Yak›nsakl›k  
Yakınsak olan, fakat mutlak yakınsak olmayan bir seri koşullu yakınsaktır.

TEOREM 16 Mutak Yak›nsakl›k Testi

yakınsak ise,  de yakınsaktır.a
q

n = 1
ana

q

n = 1
 ƒ an ƒ

Alterne harmonik seri koşullu yakınsaktır.
Mutlak yakınsaklık iki nedenden dolayı önemlidir. İlk olarak, pozitif terimli serilerin

yakınsaklığı için iyi testlerimiz vardır. İkincisi, bir seri mutlak olarak yakınsak ise, yakın-
saktır. Bu aşağıdaki teoremin temelidir.

‹spat Her n için,

– uanu � an � uanu’dir. Dolayısıyla 0 � an + uanu � 2uanu

olur. yakınsak ise, de yakınsaktır ve Doğrudan Karşılaştırma Testine
göre, negatif olmayan serisi de yakınsak olur. Artık an = (an + uanu) – uanu.
eşitliği serisini iki yakınsak serinin farkı olarak ifade etmemize izin verir:

Dolayısıyla, yakınsaktır.gq

n=1  an

a
q

n = 1
 an = a

q

n = 1
san + ƒ an ƒ - ƒ an ƒ d = a

q

n = 1
san + ƒ an ƒ d - a  

q

n = 1
ƒ an ƒ .

gq

n=1 an

gq

n=1 san + ƒ an ƒ d
gq

n=1 2 ƒ an ƒgq

n=1 ƒ an ƒ



D‹KKAT Teorem 16’yı her mutlak yakınsak serinin yakınsadığını söyleyecek şekilde
yeniden ifade edebiliriz. Ancak, bu ifadenin tersi doğru değildir: Çoğu yakınsak seri mut-
lak olarak yakınsamaz (Örnek 1’deki alterne harmonik seride olduğu gibi).

ÖRNEK 3 Mutlak Yak›nsakl›k Testini Uygulamak

(a) ’e karşılık gelen mutlak değerler serisi

şöyledir:

Asıl seri yakınsaktır, çünkü mutlak değerler serisi yakınsaktır.

(b) serisine karşılık gelen 

mutlak değerler serisi, ile karşılaştırıldığında, yakınsar, çünkü her n için
’dir. Asıl seri mutlak yakınsaktır; dolayısıyla yakınsaktır.

ÖRNEK 4 Alterne p-serileri

Pozitif bir p-sabiti için dizisi, limiti sıfır olan azalan bir dizidir. Dolayısıyla 

alterne p-serisi yakınsaktır.
p � 1 ise, seri mutlak yakınsaktır. 0 � p � 1 ise, seri koşullu yakınsak olur.

Serileri Yeniden Düzenlemek

 Absolute convergence: 1 -
1

23>2 +
1

33>2 -
1

43>2 +
Á

 Conditional convergence: 1 -
1

22
+

1

23
-

1

24
+

Á

a
q

n = 1
 
s -1dn - 1

np = 1 -
1
2p +

1
3p -

1
4p +

Á , p 7 0

51>np6

ƒ sin n ƒ … 1
gq

n=1 s1>n2d

a
q

n = 1
` sin n

n2 ` =

ƒ sin 1 ƒ

1
+

ƒ sin 2 ƒ

4
+

Á ,

a
q

n = 1
 
sin n
n2 =

sin 1
1

+
sin 2

4
+

sin 3
9

+
Á ,

a
q

n = 1
 
1
n2 = 1 +

1
4

+
1
9

+
1
16

+
Á .

a
q

n = 1
s -1dn + 1 

1
n2 = 1 -

1
4

+
1
9

-
1
16

+
Á ,
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TEOREM 17 Mutlak Yak›nsak Seriler ‹çin Yeniden Düzenleme 
Teoremi 

mutlak yakınsak ise ve b1, b2, …, bn, … {an}   dizisinin herhangi  bir
düzenlenişi ise,  de mutlak yakınsaktır ve 

dir.

a
q

n = 1
bn = a

q

n = 1
an .

gbn

gq

n=1 an

(İspatın bir taslağı için Alıştırma 60’a bakın.)

Koşullu yakınsaklık:

Mutlak yakınsaklık:
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ÖRNEK 5 Yeniden Düzenleme Teoremini Uygulamak 

Örnek 3’te gördüğümüz gibi

serisi mutlak yakınsaktır. Serinin terimlerinin olası bir yeniden düzenlenişi pozitif bir te-
rimle başlayabilir, sonra ilk negatif terim gelebilir, daha sonra üç pozitif terim, sonra dört
negatif  terim, vs: Aynı işaretli k terimden sonra, zıt işaretli k + 1 terim alın. Böyle bir seri-
nin ilk on terimi şöyledir:

Yeniden Düzenleme Teoremi iki serinin de aynı değere yakınsadığını söyler. Bu örnekte,
başlangıçta elimizde ikinci seri olsaydı, ve yapabileceğimizi bilseydik, muhtemelen onu
birinciyle değiştirmekten mutluluk duyardık. Daha iyisini de yapabiliriz: İki serinin  her
birinin toplamı aynı zamanda

farkına eşittir. (Alıştırma 61’e bakın.)

Koşullu yakınsak bir serinin sonsuz sayıda terimini yeniden düzenlersek, orijinal
serininkinden çok farklı sonuçlar elde edebiliriz. Bir örnek aşağıdadır.

ÖRNEK 6 Alterne Harmonik Seriyi Yeniden Düzenlemek

Alterne harmonik serisi ıraksayacak veya daha önceden belirlenmiş bir toplam verecek
şekilde yeniden düzenlenebilir.

(a) ’yi ıraksayacak şekilde yeniden düzenlemek. serisi
+�’a, serisi ise  –�’a ıraksar. Tek sayılı terimler dizisinin neresinden
başlarsak başlayalım, her zaman keyfi derecede büyük bir toplam elde edecek kadar
çok pozitif terim toplayabiliriz. Benzer şekilde, negatif terimlerle de, nereden
başlarsak başlayalım, her zaman mutlak değeri keyfi derecede büyük bir negatif
toplam elde edecek kadar birbirini izleyen çift sayılı terim toplayabiliriz. Eğer is-
tersek, örneğin +3’ten daha büyük bir toplam elde edene kadar tek sayılı terimler
toplayabilir ve yeni toplamı – 4’ten küçük yapacak şekilde yeterli sayıda birbirini
izleyen negatif terimlerle devam edebiliriz. Sonra yeni toplamı +5’ten daha büyük ya-
pacak sayıda pozitif terim toplar ve birbirini izleyen kullanılmamış negatif terimler
ekleyerek toplamı –6’dan küçük yapabiliriz, vs. Bu şekilde, uzamaları iki tarafta da
keyfi derecede büyük yapabiliriz.

(b) ’yi 1’e yakınsayacak şekilde yeniden düzenlemek. Başka bir olasılık
da belirli bir limitte odaklanmaktır.1’e yakınsayan toplamlar elde etmeye çalıştığımızı
varsayın. Birinci terim, 1@1’le başlar ve bundan 1@2 çıkarırız. Sonra 1@3 ve 1/5 ekle-
riz, ki bunların toplamı 1 veya 1’den büyük yapar. Sonra toplam 1’den az olana kadar
birbirini izleyen negatif terimler ekleriz. Bu şekilde işleme devam ederiz: Toplam
1’den küçük ise, toplam 1 veya daha büyük olana kadar pozitif terimler ekleyin; sonra

gq
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Á



toplam yeniden 1’den küçük olana kadar terim çıkarın (negatif terimler ekleyin). Bu
işlem sonsuz olarak sürdürülebilir. n → � iken, asıl serinin hem tek sayılı hem de çift
sayılı terimleri sıfıra yaklaştığı için, kısmi toplamlarımızın 1’i aştığı veya 1’in altına
düştüğü miktar sıfıra yakınsar. Yeniden düzenlenmiş seri şu şekilde başlar: 

Örnek 6’da gösterilen davranış şekli herhangi bir koşullu yakınsak seride olabilecek-
lerin bir örneğidir. Bu nedenle, koşullu yakınsak bir serinin terimlerini daima verilen sıra-
da toplamalıyız.

Şu ana kadar serilerin yakınsaklığı ve ıraksaklığı için birkaç test geliştirdik. Özet ola-
rak: 
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1. n. Terim Testi: an → 0  olmadıkça seri ıraksar.

2. Geometrik seri: serisi, u r u � 1  için yakınsak; aksi halde ıraksaktır. 

3. p-serisi: serisi  p � 1 için yakınsak; aksi halde ıraksaktır. 

4. Terimleri negatif olmayan seriler: İntegral Testini, Oran Testini veya Kök
Testini deneyin. Karşılaştırma  Testine göre, bilinen bir seri ile karşılaştırma-
yı deneyin.

5. Bazı terimleri negatif olan seriler: yakınsak mıdır? Evet ise mutlak 

yakınsaklık yakınsaklığı gerektirdiğinden de yakınsaktır.   

6. Alterne seriler: Alterne Seriler Testinin koşullarını sağlarsa yakınsak-
tır.

gan

gan

g  ƒ an ƒ

g1>np

garn

ALIfiTIRMALAR 11.6

Yak›nsakl›k veya Iraksakl›¤› Belirlemek
1–10 alıştırmalarındaki serilerin hangileri yakınsak, hangileri ırak-
saktır? Yanıtlarınızı açıklayın. 

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

Mutlak Yak›nsakl›k
11–44 alıştırmalarındaki serilerden hangileri mutlak yakınsak, hangi-
leri ıraksaktır? Yanıtlarınızı açıklayın.
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27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41.

42. 43.

44.

Hata Tahmini
45–48 alıştırmalarında, bütün serinin toplamına yaklaşımda bulunmak
için serinin ilk dört terimini kullanmanın vereceği hatanın büyüklüğü-
nü bulun. 

45.

46.

47.

48.

T  49 ve 50 Alıştırmalarındaki toplamlara büyüklüğü 5 � 10–6’dan
daha küçük bir hatayla yaklaşım yapın.

49.

50.

Teori ve Örnekler
51. a.

serisi Teorem 14’ün koşullarından birini sağlamaz. Hangisini?

b. (a) şıkkındaki serinin toplamını bulun. 

1
3

-

1
2

+

1
9

-

1
4

+

1
27

-

1
8

+
Á

+

1
3n -

1
2n +

Á

a
q

n = 0
s -1dn 

1
n!

a
q

n = 0
s -1dn 

1
s2nd!

1
1 + t

= a
q

n = 0
s -1dnt n, 0 6 t 6 1

a
q

n = 1
s -1dn + 1 

s0.01dn

n

a
q

n = 1
s -1dn + 1 

1
10n

a
q

n = 1
s -1dn + 1 

1
n

a
q

n = 1
s -1dn csch n

a
q

n = 1
s -1dn sech na

q

n = 1
 

s -1dn

2n + 2n + 1

a
q

n = 1
s -1dn A2n + 1n - 2n B

a
q

n = 1
s -1dn A2n2

+ n - n Ba
q

n = 1
s -1dn A2n + 1 - 2n B

a
q

n = 1
s -1dn 

sn!d2 3n

s2n + 1d!a
q

n = 1
s -1dn 

s2nd!
2nn!n

a
q

n = 1
 
s -1dn + 1sn!d2

s2nd!a
q

n = 1
 
s -1dnsn + 1dn

s2ndn

a
q

n = 1
 
cos np

na
q

n = 1
 
cos np

n2n

a
q

n = 2
s -1dn a ln n

ln n2 b
n

a
q

n = 1
 

s -1dn - 1

n2
+ 2n + 1

a
q

n = 1
s -5d-n

a
q

n = 1
 
s -100dn

n!

a
q

n = 1
s -1dn 

ln n
n - ln na

q

n = 1
s -1dn 

n
n + 1

52. Teorem 14’ün koşullarını sağlayan bir alterne serinin limiti, L, ar-
dışık iki kısmi toplam arasında bulunur. Bu, L’yi tahmin etmek
için,

ortalamasını kullanmayı önerir. Alterne harmonik serilerin
toplamına bir yaklaşım olarak

değerini hesaplayın. Kesin toplam ln 2 = 0.6931…’dır.

53. Teorem 14’ün koşullarını sağlayan bir alterne serinin
kalanının işareti Teorem 15’te, Teorem 14’ün koşullarını
sağlayan bir alterne seriye kısmi toplamlarının biriyle yaklaşım
yapıldığında, kalanın (kullanılmamış terimlerin toplamı) işare-
tinin ilk kullanılmayan teriminkiyle aynı olduğunu söyleyen
ifadeyi ispatlayın. (İpucu: Kalanın terimlerini birbirini izleyen
çiftler halinde gruplayın.)

54.

serisinin ilk 2n teriminin toplamının 

serisinin ilk n teriminin toplamıyla aynı olduğunu gösterin. Bu
seriler yakınsar mı? İlk serinin ilk 2n + 1 teriminin toplamı nedir?
Seriler yakınsıyorlarsa, toplamları nedir?

55. ıraksak ise,  ’nin de ıraksak olduğunu gösterin.

56. mutlak yakınsak ise,

olduğunu gösterin.

57. Hem hem de mutlak yakınsak ise, aşağıdaki-
lerin  de mutlak yakınsak olduklarını gösterin.

a. b.

c. (k herhangi bir sayı)

58. Hem  hem de yakınsak olsalar bile,
’nin ıraksak olabileceğini örnekle gösterin.

59. Örnek 6’da, terimleri yeniden düzenleyerek –1@2’ye yakınsayan
yeni bir seri elde etmek istediğimizi varsayın. Yeni düzenlemeye
ilk negatif terim, –1@2, ile başlayın. Elinizde ne zaman –1@2’ye
eşit veya bundan daha küçük bir toplam varsa, yeni toplam
–1@2’den büyük oluncaya kadar birbirini izleyen pozitif terimler
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Toplamın ln 2 olduğu  gösterilebilir.

Bölüm 11.7’de göreceğiniz gibi,
toplan ln(1.01)’dir.

Bölüm 11.9’da göreceğiniz gibi, toplam
cos1, yani 1 radyanın kosinüsüdür.

Bölüm 11.9’da göreceğiniz gibi toplam
e–1’dir.

T

T

T



eklemeye başlayın. Sonra yeni toplam –1@2’den küçük veya ona
eşit oluncaya kadar negatif terimler ekleyin. İşleme kısmi toplam-
larınız hedefin en az üç kez üzerine çıkana kadar devam edin ve
işlemi hedefte veya hedefin altında bitirin. sn yeni serinizin ilk n
teriminin toplamıysa, (n, sn) noktalarını işaretleyerek toplamların
nasıl davrandıklarını gösterin.

60. Yeniden Düzenleme Teoreminin (Teorem 17) ispatının taslağı

a. � pozitif bir sayı, ve olsun. Bir
N1 indisi ve bir başka N2 � N1 indisi için,

olduğunu gösterin. Bütün a1, a2, … , aN2
terimleri dizi-

sinin bir yerlerinde ortaya çıktıkları için, n � N3 ise
’nin en fazla m � N1 koşuluna uygun  am te-

rimlerinin toplamı olacak şekilde bir N3 � N2 indisi vardır.
Dolayısıyla, n � N3 ise,

olur.
b. (a) şıkkında söylenenler, mutlak yakınsak ise

’nin de yakınsak ve   
olduğunu söyler. yakınsak olduğundan,  
’nin  ’ye yakınsayacağını gösterin.

61. Mutlak yakınsak serileri ayırmak

a. yakınsak ise ve 

’nin yakınsak olduğunu gösterin.

b. (a) şıkkındaki sonucu kullanarak, benzer şekilde,   
yakınsak ise ve 

’nin yakınsak olduğunu gösterin.gq
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Başka bir deyişle, bir seri mutlak yakınsak ise pozitif
terimleri, ve benzer şekilde negatif terimleri,  yakınsak bir seri
oluşturur. Dahası,  

olur, çünkü bn = (an + u an u)@2  ve  cn = (an – u an u) @2’dir.

62. Burada yanlış olan nedir?

alterne harmonik serisinin iki tarafını da 2 ile çarparak

elde edin. Okların gösterdiği gibi, paydaları aynı olan terimleri bir
araya toplayarak

serisini elde edin.

Bu denklemin sağ tarafındaki seri başladığımız seridir. Yani ,
2S = S olur ve 2 ile bölersek, 2 = 1 buluruz. (Kaynak: “Riemann’s
Rearrangement Theorem,” Stewart Galanor, Mathematics Teacher,
Vol.80, No.8, 1987, s. 675-681.)

63. N � 1 iken, Teorem 14’teki serinin yakınsaklığını göstermek için
Şekil 11.9’dakine benzer bir şekil çizin.
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Kuvvet  Serileri     

Sonsuz serilerin yakınsaklığını test edebildiğimize göre, bu bölümün başında söz edilen
sonsuz polinomları inceleyebiliriz. Bu polinomlara kuvvet serileri deriz, çünkü bir değiş-
kenin, bizim durumumuzda x, kuvvetlerinin sonsuz serileri olarak tanımlanabilirler. Poli-
nomlar gibi, kuvvet serileri de toplanıp, çıkarılıp, çarpılıp, türevleri alınıp, integre edilip
yeni kuvvet serileri elde edilebilir.

11.7

ve

an � 0 ise

an � 0 ise

an � 0 ise

an � 0 ise
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TANIMLAR Kuvvet Serileri, Merkez, Katsay›lar
x = 0 civarında bir kuvvet serisi

(1)

şeklinde bir seridir.
x = a civarında bir kuvvet serisi

(2)

şeklinde bir seridir. Burada merkez a ve katsayılar c0, c1, c2, …, cn sabitler-
dir.

a
q

n = 0
cnsx - adn

= c0 + c1sx - ad + c2sx - ad2
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Á
+ cnsx - adn

+
Á

a
q

n = 0
cn xn

= c0 + c1 x + c2 x2
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Á
+ cn xn

+
Á .

Kuvvet Serileri ve Yak›nsakl›k

Formel  tanımla işe başlıyoruz.

(1) denklemi (2) denkleminde a = 0 alınarak elde edilen özel bir durumdur.

ÖRNEK 1 Bir Geometrik Seri 

(1) denklemindeki bütün katsayıları 1 almak

geometrik kuvvet serisini verir. Bu, ilk terimi 1 ve oranı x olan geometrik seridir. u x u � 1
için 1@(1 – x)’e yakınsar. Bunu

(3)

yazarak ifade ederiz.
Şimdiye kadar (3) denklemini sağ taraftaki serinin toplamının bir formülü olarak yazdık.
Şimdi odağımızı değiştiriyoruz: Sağ taraftaki serinin kısmi toplamlarını soldaki fonksiyo-
na yaklaşımda bulunan Pn(x) polinomları olarak düşünüyoruz. Sıfır civarındaki x değerle-
rinde, iyi yaklaşım için serinin sadece birkaç terimini almamız yeterlidir. x = 1 veya
–1’e doğru ilerlerken, daha fazla terim almamız gerekir. Şekil 11.10 ƒ(x) = 1@(1 – x)
fonksiyonunun ve n = 0, 1, 2 ve 8 için yn = Pn(x) yaklaşım polinomlarının grafiklerini gös-
termektedir.  ƒ(x) = 1@(1 – x)  fonksiyonu, dikey asimptotunun bulunduğu  x = 1’i içeren
aralıklarda sürekli değildir. Bu nedenle yaklaşımlar x � 1 için uygulanamaz. 

ÖRNEK 2 Bir Geometrik Seri

(4)

kuvvet serisi, a = 2, c0 = 1, c1 = –1@2, c2 = 1@4, … , cn = (–1@2)n ile  (2) denklemine uyar.

Bu, ilk terimi 1 ve oranı olan bir geometrik seridir. Bu seri r = -
x - 2
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veya 0 � x � 4 için yakınsar. Toplamı

olarak bulunur, dolayısıyla

olur. (4) serisi 2 civarındaki x değerleri için ƒ(x) = 2@x’e kullanışlı polinom yaklaşımları üretir:

gibi (Şekil 11.11).

ÖRNEK 3 Oran Testini Kullanarak Yak›nsakl›¤› Test Etmek 

Aşağıdaki kuvvet serileri hangi x değerleri için yakınsar?
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fiEK‹L 11.10 ve polinom yaklaşımlarından
dördünün grafikleri (Örnek 1).

ƒsxd = 1>s1 - xd
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fiEK‹L 11.11 ƒ(x) = 2@x ve ilk üç polinom
yaklaşımının grafikleri (Örnek 2).
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Çözüm un, söz konusu serinin n. terimi olmak üzere ou unu serisine Oran Testini uygu-
layın.

(a)

Seri, u x u � 1 için mutlak yakınsaktır. u x u � 1 ise ıraksaktır, çünkü n. terim sıfıra ya-
kınsamaz. x = 1’de, yakınsak olan alterne harmonik seriyi, 1 – 1@2 + 1@3 – 1@4 + …,
elde ederiz. x = –1’de, harmonik serinin negatifini, –1 – 1@2 – 1@3 – 1@4 – …, buluruz,
ki bu seri ıraksar.  (a) serisi –1 � x � 1 için yakınsaktır, başka yerlerde ise ıraksak
olur. 

(b)

Seri,  x2 � 1 için mutlak yakınsaktır. x2 � 1  için ıraksaktır çünkü n. terim sıfıra
yakınsamaz. x = 1’de, Alterne Seri Teoremine göre yakınsak olan 1 – 1@3 + 1@5 –
1@7 + ⋅⋅⋅ serisini elde ederiz. Seri x = –1’de de yakınsar, çünkü yakınsaklık koşullarını
sağlayan bir alterne seri verir. x = –1’deki değer, x = 1’deki değerin negatifidir. (b)
serisi –1 � x � 1 için yakınsak, başka yerlerde ıraksaktır.

(c)

Seri, her x için mutlak yakınsaktır.

(d)

Seri, x = 0 hariç her x değeri için ıraksaktır.

Örnek 3 genelde kuvvet serilerinin yakınsaklığını nasıl test ettiğimizi ve olası sonuç-
ları göstermektedir.

0
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n!xn ` = sn + 1d ƒ x ƒ : q  unless x = 0.
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–1 0 1
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–1 0 1
x

` un + 1
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n
n + 1 ƒ x ƒ : ƒ x ƒ .

TEOREM  18 Kuvvet Serileri ‹çin Yak›nsakl›k Teoremi

x = c 
 0 için yakınsak ise, her u x u � u c u için mutlak yakınsaktır. Seri, x = d

için ıraksak ise her  u x u � u d u için ıraksaktır.

 a
q

n = 0
an xn

= a0 + a1 x + a2 x2
+

Á

x = 0 değilse.

her x için.



‹spat serisinin yakınsadığını varsayın. Bu durumda, limn→∞ anc
n = 0 olur.

Dolayısıyla, her n � N için, olmasını sağlayacak bir N tamsayısı vardır. Yani,

n � N için      (5)

olur. Şimdi  olacak şekilde bir x alın ve

toplamını düşünün. ’den önce sonlu sayıda terim vardır ve toplamları da sonludur.
ve bundan sonraki terimlerin toplamı, (5)’ten dolayı,

(6)

toplamından küçüktür. Fakat (6) serisi, u x u � u c u olduğundan, r = ux@c u oranı 1’den küçük
olan bir geometrik seridir. Bu yüzden, (6) serisi yakınsaktır ve dolayısıyla asıl seri mutlak
yakınsaktır. Bu teoremin ilk yarısını ispatlar.

Teoremin ikinci yarısının ispatı birinci yarının ispatından çıkar. Seri, x = d’de ıraksak
ise ve u x0 u � u d u olacak şekilde bir x0 değerinde yakınsak ise teoremin ilk kısmında c = x0

alabilir ve serinin x = d’de mutlak yakınsak olduğu  sonucunu çıkarabiliriz. Fakat seri aynı
anda hem mutlak yakınsak, hem de ıraksak olamaz. Dolayısıyla, d’de ıraksak ise, her
u x u � u d u için ıraksaktır.

Notasyonu basitleştirmek için, Teorem 18’de oanx
n formundaki serilerin yakınsaklık-

larını göz önüne aldık.  formundaki seriler için x – a’yı x	 ile değiştirip so-
nuçları  oan(x	)n serisine uygulayabiliriz.

Bir Kuvvet Serisinin Yak›nsakl›k Yar›çap› 

İspatladığımız teorem ve incelediğimiz örnekler, bir  kuvvet serisinin aşağı-
daki üç şekilden birine uygun davrandığı sonucunu verir. Seri sadece  x = a için yakınsak
veya her yerde yakınsak olabilir ya da  x = a merkezli R yarıçaplı bir aralık üzerinde ya-
kınsak olabilir. Bunu, Teorem 18’in bir sonucu olarak ispat ediyoruz.

gcnsx - adn

gansx - adn

` xc `
N

+ ` xc `
N + 1

+ ` xc `
N + 2

+
Á

ƒ aN xN
ƒ

ƒ aN xN
ƒ

ƒ a0 ƒ + ƒ a1 x ƒ +
Á

+ ƒ aN - 1x
N - 1

ƒ + ƒ aN xN
ƒ + ƒ aN + 1xN + 1

ƒ +
Á .

ƒ x ƒ 6 ƒ c ƒ

ƒ an ƒ 6
1

ƒ c ƒ
n for n Ú N .

ƒ an cn
ƒ 6 1

gq

n=0 an cn
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TEOREM 18’‹N SONUCU 
serisinin yakınsaklığı aşağıdaki üç durumdan biri ile  açıklanır.

1. Serinin u x – a u � R koşulunu sağlayan x’ler  için ıraksak, fakat u x – a u � R
koşulunu sağlayan x’ler  için mutlak yakınsak olduğu pozitif bir R sayısı var-
dır. Seri, x = a – R ve  x = a + R uç noktalarının her birinde yakınsak olabi-
lir veya olmayabilir.

2. Seri her  x için mutlak yakınsaktır (R = ). 

3. Seri x = a’da yakınsak ve başka her yerde ıraksaktır (R = 0).

q

gcnsx - adn
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‹spat Önce, a = 0 ve dolayısıyla kuvvet serisinin merkezinin 0 olduğunu kabul ede-
lim. Seri her yerde yakınsak ise Durum 2 söz konusudur. Seri sadece x = 0 da yakınsak
ise Durum 3 söz konusudur. Bunlar dışında, serisinin ıraksak olduğu, sıfırdan
farklı bir d sayısı vardır.  serisinin yakınsak olduğu x değerlerinin kümesi, S,
boş küme değildir. Çünkü 0’ı ve bir p pozitif sayısını içerir. Teorem 18’e göre seri

koşulunu sağlayan her x için ıraksaktır ve bu nedenle her  x P S için
’dir ve dolayısıyla S sınırlı bir kümedir. Reel sayıların Tamlık Özelliğine göre

(Ek 4’e bakın) boş olmayan sınırlı bir kümenin bir en küçük üst sınırı, R, vardır. (En
küçük üst sınır,  x P S elemanları için x � R eşitsizliğinin sağlandığı en küçük sayı-
dır.)  ise dir ve dolayısıyla serisi ıraksaktır. u x u � R ise
u x u S kümesi için bir üst sınır değildir (çünkü en küçük üst sınırdan küçüktür) bu ne-
denle b � u x u olacak şekilde bir b P S sayısı vardır. b P S olduğundan serisi
yakınsaktır ve bundan dolayı Teorem 18’e göre, serisi yakınsaktır. Bununla,
a = 0 merkezli kuvvet serileri için Sonuç ispatlanmış olur.

a 
 0  merkezli bir kuvvet serisi için x	 = (x – a)  yazarız ve yukarıdakileri  x	 ile
tekrar ederiz. x = a için x	 = 0 olduğundan, x	 = 0 merkezli serisinin R
yarıçaplı bir yakınsaklık aralığı ile x = a merkezli serisinin R yarıçaplı
yakınsaklık aralığı aynıdır. Bu, genel durum için Sonucu ispatlar. 

R’ye kuvvet serisinin yakınsaklık yarıçapı, x = a merkezli ve R yarıçaplı aralığa ya-
kınsaklık aralığı denir. Yakınsaklık aralığı seriye bağlı olarak açık, kapalı veya yarı açık
olabilir. u x – a u � R koşulunu sağlayan x’ler için seri mutlak yakınsaktır. Seri her x değe-
ri için yakınsak ise yakınsaklık yarıçapı sonsuzdur deriz. Seri sadece x = a’da yakınsak ise
yakınsaklık yarıçapı sıfırdır deriz.

gcnsx - adn
gcnsx¿dn

gcn ƒ x ƒ
n

gcn bn

gcn xnx x Sƒ x ƒ 7 R Ú p ,

ƒ x ƒ … ƒ d ƒ

ƒ x ƒ 7 ƒ d ƒ ,

gcn xn
gcn dn

Bir Kuvvet Serisinin Yak›nsakl›¤›n› Test Etmek 

1. Serinin mutlak yakınsak olduğu aralığı bulmak için Oran testini (veya n. Kök
Testini) kullanın. Doğal olarak bu bir açık aralıktır,

u x – a u � R       veya   a – R � x � a + R.

2. Mutlak yakınsaklık aralığı sonlu ise her bir uç noktada yakınsaklığı veya
ıraksaklığı test edin , (Örnek 3a ve b’deki gibi).  Bir Karşılaştırma Testi, İn-
tegral Testi veya Alterne Seri Testi kullanın.

3. Mutlak yakınsaklık aralığı  a – R � x � a + R ise u x – a u � R için seri ırak-
saktır (koşullu yakınsak bile değildir), çünkü x’in bu değerleri için n.terim
sıfıra yakınsamaz.

Terim-Terime Türetme 

İleri analizin bir teoremi bir kuvvet serisinin yakınsaklık aralığının her iç noktasında
terim-terime türetilebileceğini söyler.



ÖRNEK 4 Terim-Terime Türetmeyi Uygulamak

ise ƒ	(x) ve ƒ�(x) serilerini bulun.

Çözüm

D‹KKAT Terim-terime türev alma başka tür seriler için işe yaramayabilir. Örneğin,
trigonometrik

serisi her x için yakınsar. Fakat terim-terime türev alırsak, her x için ıraksak olan

serisini buluruz. Bu,  x’in pozitif kuvvetlerinin bir toplamı olmadığından, bir kuvvet serisi
değildir.

a
q

n = 1
 
n!cos sn!xd

n2 ,

a
q

n = 1
 
sin sn!xd

n2

 = a
q

n = 2
nsn - 1dxn - 2, -1 6 x 6 1

 ƒ–sxd =
2

s1 - xd3 = 2 + 6x + 12x2
+

Á
+ nsn - 1dxn - 2

+
Á

 = a
q

n = 1
nxn - 1, -1 6 x 6 1

 ƒ¿sxd =
1

s1 - xd2 = 1 + 2x + 3x2
+ 4x3

+
Á

+ nxn - 1
+

Á

 = a
q

n = 0
xn, -1 6 x 6 1

 ƒsxd =
1

1 - x
= 1 + x + x2

+ x3
+ x4

+
Á

+ xn
+

Á
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TEOREM  19 Terim-Terime Türetme Teoremi
serisi  bir R � 0 için, a – R � x � a + R aralığında yakınsak ise

bir ƒ fonksiyonu tanımlar:

Böyle bir ƒ fonksiyonunun yakınsaklık aralığı içinde her mertebeden türevi
vardır. Türevleri, esas seriyi terim-terime türeterek elde edebiliriz:

vs. Türev alarak elde edilmiş  her seri, esas serinin yakınsaklık aralığının her 
iç noktasında yakınsaktır. 

 ƒ–sxd = a
q

n = 2
nsn - 1dcnsx - adn - 2 ,

 ƒ¿sxd = a
q

n = 1
ncnsx - adn - 1

ƒsxd = a
q

n = 0
cnsx - adn, a - R 6 x 6 a + R .

gcnsx - adn
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ÖRNEK 5 için bir seri

fonksiyonunu tanımlayın.

Çözüm Orijinal seriyi terim-terime türeterek 

buluruz. Bu, birinci terimi 1 ve oranı  –x2 olan bir geometrik seridir, o yüzden

olur. Artık  ’yi integre ederek

bulabiliriz. x = 0 iken, ƒ(x) serisi sıfırdır, bu yüzden C = 0 olur. Böylece

(7)

elde ederiz. Bölüm 11.10’da, serinin x = �1’de de tan–1 x’e yakınsadığını göstereceğiz.

ƒsxd = x -
x3

3
+

x5

5 -
x7

7 +
Á

= tan-1 x, -1 6 x 6 1.

L
ƒ¿sxd dx =

L
 

dx
1 + x2 = tan-1 x + C .

ƒ¿sxd = 1>s1 + x2d

ƒ¿sxd =
1

1 - s -x2d
=

1
1 + x2 .

ƒ¿sxd = 1 - x2
+ x4

- x6
+

Á, -1 6 x 6 1.

ƒsxd = x -
x3

3
+

x5

5 -
Á, -1 … x … 1.

tan-1 x, -1 … x … 1

TEOREM  20 Terim-Terime ‹ntegrasyon Teoremi

fonksiyonunun  a – R � x � a + R (R � 0) aralığında yakınsak olduğunu
varsayın. Bu durumda 

de  a – R � x � a + R aralığında yakınsak olur ve a – R � x � a + R için 

olur.

L
ƒsxd dx = a

q

n = 0
cn 

sx - adn + 1

n + 1
+ C

a
q

n =0
cn 

(x - a)n+1

n + 1

ƒsxd = a
q

n = 0
cnsx - adn

Terim-Terime ‹ntegrasyon

İleri analizin başka bir teoremi bir kuvvet serisinin yakınsaklık aralığı içinde terim-terime
integre edilebileceğini söyler.
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TEKNOLOJ‹ KULLANMAK Serilerin ‹ncelenmesi

Seriler bir çok yönden integrallere benzer. Elemanter fonksiyonlar cinsinden açık ters tü-
revleri var olan fonksiyonların sayısının, integre edilebilir fonksiyonların sayısına oranla
küçük olması gibi, x-aralıklarında açık elemanter fonksiyonlarla uyuşan x’in kuvvet seri-
lerinin sayısı da bir x-aralığında yakınsak olan kuvvet serilerinin sayısının yanında küçük-
tür. Grafik çizme araçları böyle serilerin incelenmesinde, sayısal integrasyonun belirli in-
tegrallerin incelenmesinde yardımcı olduğu gibi, yardımcı olabilir. x’in belirli
değerlerinde kuvvet serilerini inceleme becerisi çoğu Bilgisayarlı Cebir Sistemi’nin içine
yerleştirilmiştir.

Bir seri yeterince hızlı yakınsıyorsa, BCS araştırması bize toplam hakkında bir fikir
verebilir. Örneğin,   serisinin ilk kısmi toplamlarını hesaplarken (Bölüm
11.4, Örnek 2b), Maple, 31 � n � 200 için Sn = 1.606695152 verir. Bu, serinin
toplamının 10 ondalık basamak hassaslıkla 1.606695152 olduğunu belirtir. Gerçekten
de,

bulunur. 200 terimden sonraki kalan ihmal edilebilir.
Ancak, BCS ve hesap makinesi araştırmaları, seriler çok yavaş yakınsıyor veya ırak-

sıyor ise, bizim için fazla bir şey yapamazlar ve gerçekte fazlasıyla yanıltıcı olabilirler.
Örneğin, serisinin kısmi toplamlarını hesaplamayı deneyin. Terimler
bizim genellikle çalıştığımız sayılara nazaran çok küçüktür ve kısmi toplamlar, yüzlerce
terimden oluşsalar bile, çok küçüktürler. Serinin yakınsadığını düşünmek hatasına bile
düşebiliriz. Aslında, seriyi şeklinde yazarak görebileceğimiz gibi,
seri ıraksaktır. 

Bölüm 11.9’da hata tahminlerini öğrendikten sonra, sayısal sonuçları nasıl yorum-
layacağımızı daha iyi anlayacağız.

s1>1010dgq

k=1 s1>kd ,

gq

k=1 [1>s1010kd] .

a
q

k = 201
 

1
2k

- 1
= a

q

k = 201
 

1
2k - 1s2 - s1>2k - 1dd

6 a
q

k = 201
 

1
2k - 1 =

1
2199 6 1.25 * 10-60 .

gq

k=1 [1>s2k - 1d]

Şuna dikkat edin Örnek 5’teki orijinal seri yakınsaklık aralığının her iki uç noktasında
da yakınsaktır, fakat Teorem 20 türevi alınmış serinin sadece aralığın iç noktalarındaki ya-
kınsaklığını garanti eder.

ÖRNEK 6 için bir seri

serisi  –1 � t � 1 açık aralığında yakınsaktır. Dolayısıyla,  

bulunur. Ayrıca serinin x = 1’de  ln 2 sayısına yakınsadığı da gösterilebilir, fakat teorem
bunu garantilemez.

 = x -
x2

2
+

x3

3
-

x4

4
+

Á, -1 6 x 6 1.

 ln s1 + xd =

L

x

0
 

1
1 + t

 dt = t -
t2

2
+

t3

3
-

t4

4
+

Á d
0

x

1
1 + t

= 1 - t + t2
- t3

+
Á

ln s1 + xd, -1 6 x … 1

Teorem 20
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ÖRNEK 7

geometrik serisini kendisiyle çarparak, u x u � 1 için, 1@(1 – x)2’nin kuvvet serisini bulun.

Çözüm

ve

n + 1 terim

n + 1 tane bir

olsun. Bu durumda, Serilerin Çarpımı Teoremine göre, 

1@(1 – x)2’nin serisidir. Seri u x u � 1 için mutlak yakınsaktır.
Örnek 4’ün, 

olduğu için, aynı sonucu verdiğine dikkat edin.

d
dx

 a 1
1 - x

b =
1

s1 - xd2 .

 = 1 + 2x + 3x2
+ 4x3

+
Á

+ sn + 1dxn
+

Á

 Asxd # Bsxd = a
q

n = 0
cn xn

= a
q

n = 0
sn + 1dxn

('''')''''*

 = 1 + 1 +
Á

+ 1 = n + 1.

(''''''''''')''''''''''''*

cn = a0 bn + a1 bn - 1 +
Á

+ ak bn - k +
Á

+ an b0

 Bsxd = a
q

n = 0
bn xn

= 1 + x + x2
+

Á
+ xn

+
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= 1>s1 - xd

 Asxd = a
q

n = 0
an xn

= 1 + x + x2
+

Á
+ xn

+
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= 1>s1 - xd

a
q

n = 0
xn

= 1 + x + x2
+

Á
+ xn

+
Á

=
1

1 - x
 , for ƒ x ƒ 6 1,

TEOREM 21 Kuvvet Serileri ‹çin Seri Çarp›m Teoremi
ve serileri u x u � R için mutlak yakınsak   

ise ve

serisi u x u � R için mutlak yakınsaktır ve A(x)B(x)’e yakınsar:

aa
q

n = 0
an xnb # aa

q

n = 0
bn xnb = a

q

n = 0
cn xn .

gq

n=0 cn xn

cn = a0 bn + a1 bn - 1 + a2 bn - 2 +
Á

+ an - 1b1 + an b0 = a
n

k = 0
ak bn - k ,

Bsxd = gq

n=0 bn xnAsxd = gq

n=0 an xn

Kuvvet Serilerinin Çarp›m›

Yine ileri analizin başka bir teoremi mutlak yakınsak kuvvet serilerinin polinomları
çarptığımız gibi çarpılabileceğini söyler.

u x u � 1 için
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ALIfiTIRMALAR 11.7

Yak›nsakl›k Aral›klar›
1–32 alıştırmalarında (a) serilerin yakınsaklık yarıçaplarını ve aralık-
larını bulun. Seriler hangi x değerlerinde (b) mutlak ve (c) koşullu ya-
kınsaktırlar?

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27.

28.

29. 30.

31. 32. a
q
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33–38 alıştırmalarında serilerin yakınsaklık aralıklarını ve bu aralıkta,
serinin toplamını x’in bir fonksiyonu olarak bulun.

33. 34.

35. 36.

37. 38.

Teori ve Örnekler
39. Hangi x değerlerinde

serisi yakınsaktır? Toplamı nedir? Verilen serinin terim-terime tü-
revini alırsanız hangi seriyi bulursunuz? Yeni seri hangi x değerle-
rinde yakınsaktır? Toplamı nedir?

40. Alıştırma 39’daki seriyi terim-terime integre ederseniz hangi seri-
yi elde edersiniz? Yeni seri x’in hangi değerleri için yakınsaktır ve
toplamının bir başka adı nedir?

41.

serisi her x için sin x’e yakınsar.

a. cos x için, bir serinin ilk altı terimini bulun. Bu seri x’in hangi
değerleri için yakınsak olmalıdır?

b. sin x serisinde x yerine 2x alarak, her x için sin 2x’e yakınsa-
yan bir seri bulun.

c. (a) şıkkındaki sonucu ve seri çarpımını kullanarak,   2 sin x
cos x için, bir serisinin ilk altı terimini bulun. Yanıtınızı (b)
şıkkındaki yanıtla karşılaştırın.

42.

serisi her x için  ex’e yakınsar.

a. (d@dx)ex için bir seri bulun. ex serisini buluyor musunuz?
Yanıtınızı açıklayın.

b. bex dx için bir seri bulun. ex serisini buluyor musunuz?
Yanıtınızı açıklayın.

c. ex serisinde x yerine –x alarak her x için e–x’e yakınsayan bir
seri bulun. Sonra ex ile e–x serilerini çarparak e–x ⋅ ex.

ex
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hakkında gerek duyduğunuz
bütün bilgiyi Bölüm 11.3, Alıştırma 39’dan
elde edebilirsiniz.

a1>(n(ln n)2)

hakkında gerek duyduğunuz
bütün bilgiyi Bölüm 11.3, Alıştırma 38’den
elde edebilirsiniz.

a1>(n ln n)
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43.

serisi –p@2 � x � p@2  için tan x’e yakınsar.

a. ln u sec x u serisinin ilk beş terimini bulun. Bu seri  x’in hangi
değerleri için yakınsak olmalıdır?

b. sec2 x serisinin ilk beş terimini bulun. Bu seri x’in hangi de-
ğerleri için yakınsak olmalıdır?

c. (b)’deki yanıtınızı sec x’in Alıştırma 44’te verilen serisinin ka-
resini alarak kontrol edin.

44.

serisi –p@2 � x � p@2  için  sec x’e yakınsar. 

a. ln usec x + tan x u fonksiyonunun kuvvet serisinin ilk beş terimi-
ni bulun. Bu seri x’in hangi değerleri için yakınsak olmalıdır?

b. sec x tan x için, bir serinin ilk dört terimini bulun. Bu seri han-
gi x değerleri için yakınsak olmalıdır?

sec x = 1 +

x2

2
+

5
24

 x4
+

61
720

 x6
+

277
8064

 x8
+

Á

tan x = x +

x3

3
+

2x5

15
+

17x7

315
+

62x9

2835
+

Á

c. (b) şıkkındaki sonucunuzu sec x serisini Alıştırma 43’ te tan x
için verilen seriyle çarparak kontrol edin.

45. Yakınsak kuvvet serilerinin tekliği

a. ve kuvvet serileri yakınsak iseler ve bir
(–c, c) açık aralığındaki her x değeri için eşit iseler, her n için
an = bn olduğunu gösterin. (İpucu: 

olsun. Terim-terime türetin,
an ve bn’nin ikisinin de ƒ(n)(0)@(n!)’e eşit olduğunu gösterin.)

b. Bir (–c, c) açık aralığındaki her x için  ise, her
n için an = 0 olduğunu gösterin.

46. serisinin toplamı Serinin toplamını bulmak için,
1@(1 – x)’i geometrik seri olarak ifade edin, ortaya çıkan denkle-
min iki tarafının da x’e göre türevini alın, sonucun iki tarafını da x
ile çarpın, yeniden türev alın ve tekrar x ile çarpın, x yerine 1/2
yazın. Ne buluyorsunuz? (Kaynak: David E. Dobbs’un editöre
mektubu, Illinois Mathematics Teacher, Vol. 33, Sayı 4, 1982,
sayfa 27.)

47. Uç noktalarda yakınsaklık Bir kuvvet serisinin yakınsaklık
aralığının uç noktalarındaki yakınsaklığının  koşullu veya mutlak
olabileceğini örneklerle gösterin.

48. Yakınsaklık aralığı aşağıda gibi olan bir kuvvet serisi kurun.

a. b. c. (1, 5).s -2, 0ds -3, 3d

gq

n=0 sn2>2nd

gq

n=0 an xn
= 0

ƒsxd = gq

n=0 an xn
= gq

n=0 bn xn .

gq

n=0 bn xngq

n=0 an xn

Taylor ve Maclaurin Serileri 

Bu bölüm, sonsuz defa türetilebilen fonksiyonların, Taylor serisi denilen kuvvet serilerini
nasıl oluşturduklarını göstermektedir. Çoğu durumda, bu seriler üretici fonksiyonların kul-
lanışlı polinom yaklaşımlarını sağlayabilir.

Seri Temsili 

Teorem 19’dan, yakınsaklık aralığı içinde bir kuvvet serisinin toplamının her mertebeden
türevi var olan sürekli bir fonksiyon olduğunu biliyoruz. Fakat ya tersi? Bir ƒ(x) fonksiyo-
nunun bir I  aralığında her mertebeden türevi varsa, I’da bir kuvvet serisi olarak ifade edi-
lebilir mi? Ve edilebilirse, katsayıları ne olacaktır?

ƒ(x)’in,  yakınsaklık yarıçapı pozitif olan bir

kuvvet serisinin toplamı olduğunu varsayarsak, son soruya hemen cevap verebiliriz. I ya-
kınsaklık aralığında art arda terim-terime türev alarak,

elde ederiz. 

 ƒ‡sxd = 1 # 2 # 3a3 + 2 # 3 # 4a4sx - ad + 3 # 4 # 5a5sx - ad2
+

Á ,

 ƒ–sxd = 1 # 2a2 + 2 # 3a3sx - ad + 3 # 4a4sx - ad2
+

Á

 ƒ¿sxd = a1 + 2a2sx - ad + 3a3sx - ad2
+

Á
+ nansx - adn - 1

+
Á

 = a0 + a1sx - ad + a2sx - ad2
+

Á
+ ansx - adn

+
Á

 ƒsxd = a
q

n = 0
ansx - adn

11.8
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Burada, n. türev, her n için

ƒ(n)(x) = n!an + (x – a) çarpanını içeren terimlerin bir toplamı

ile verilir. 
Bu denklemlerin hepsi  x = a’da sağlandığından,

ve genel olarak

elde ederiz. Bu formüller, ƒ’nin I aralığındaki değerlerine yakınsayan (“ƒ’yi I’da temsil
eden” deriz)  herhangi bir kuvvet serisinin katsayılarında harika bir
kalıp ortaya çıkarır. Böyle bir seri varsa (bu hala açık bir sorudur), sadece bir tane vardır
ve n. katsayısı

dir.  ƒ’nin bir seri temsili varsa, bu

(1)

olmalıdır. Fakat, merkezi x = a’da bulunan bir I aralığında sonsuz defa türetilebilen  keyfi
bir ƒ fonksiyonuyla işe başlarsak ve bunu (1) denklemindeki seriyi üretmekte kullanırsak,
seri I’nın içindeki her x için ƒ(x)’e yakınsar mı? Yanıt belkidir—bazı fonksiyonlar için
yakınsayacak, fakat göreceğimiz gibi, bazıları için yakınsamayacaktır.

Taylor ve Maclaurin Serileri

 +
Á

+

ƒsndsad
n!

 sx - adn
+

Á .

 ƒsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2

an =

ƒsndsad
n!

.

gq

n=0 ansx - adn

ƒsndsad = n!an .

ƒ¿sad = a1,

ƒ–sad = 1 # 2a2,

ƒ‡sad = 1 # 2 # 3a3,

TANIMLAR Taylor Serileri , Maclaurin Serileri
ƒ, a’yı bir iç nokta olarak içeren bir aralıkta her mertebeden türevi olan bir
fonksiyon olsun. ƒ  tarafından  x = a’da üretilen Taylor serisi

olarak tanımlanır. ƒ tarafından üretilen Maclaurin serisi ise

ile verilir, yani ƒ’nin x = 0’da ürettiği Taylor serisidir.

a
q

k = 0
 
ƒskds0d

k!
 xk

= ƒs0d + ƒ¿s0dx +

ƒ–s0d
2!

 x2
+

Á
+

ƒsnds0d
n!

 xn
+

Á ,

 +
Á

+

ƒsndsad
n!

 sx - adn
+

Á .

 a
q

k = 0
 
ƒskdsad

k!
 sx - adk

= ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2

TARİHSEL BİYOGRAFİ

Brook Taylor
(1685–1731)

Colin Maclaurin
(1698–1746)

ƒ tarafından üretilen Maclaurin serisine genelde sadece ƒ’nin Taylor serisi denir.
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ÖRNEK 1 Bir Taylor Serisi Bulmak 

ƒ(x) = 1@x fonksiyonunun a = 2’de ürettiği Taylor serisini bulun. Eğer yakınsak ise seri
nerede 1@x’e yakınsar?

Çözüm ƒ(2), ƒ	(2), ƒ�(2), … katsayılarını bulmamız gerekir. Türev alarak,

elde ederiz. Taylor serisi

şeklindedir. Bu sabit terimi 1@2 ve oranı r = –(x – 2)@2 olan bir geometrik seridir.
u x – 2u � 2 için mutlak yakınsaktır ve toplamı

olarak bulunur. Bu örnekte, ƒ(x) = 1@x’in  a = 2’de ürettiği Taylor serisi, u x – 2u � 2 veya
0 � x � 4 için 1@x’e yakınsar.

Taylor Polinomlar›

Türevlenebilir bir ƒ fonksiyonunun a noktasındaki lineerizasyonu

ile verilen polinomdur. Bölüm 3.8’de, a’ya yakın x değerlerinde ƒ(x)’e yaklaşmak için bu
lineerizasyonu kullandık. ƒ’nin a’da daha yüksek mertebeden türevleri varsa, elde edilebi-
len her türev için, ƒ’nin daha yüksek mertebeden polinom yaklaşımları da bulunur. Bu po-
linomlara ƒ’nin Taylor polinomları denir.

P1sxd = ƒsad + ƒ¿sadsx - ad .

1>2
1 + sx - 2d>2 =

1
2 + sx - 2d

=
1
x .

 =
1
2

-

sx - 2d
22 +

sx - 2d2

23 -
Á

+ s -1dn 
sx - 2dn

2n + 1 +
Á .

 ƒs2d + ƒ¿s2dsx - 2d +

ƒ–s2d
2!

 sx - 2d2
+

Á
+

ƒsnds2d
n!

 sx - 2dn
+

Á

 ƒsndsxd = s -1dnn!x-sn + 1d,   
ƒsnds2d

n!
=

s -1dn

2n + 1 .

 o   o

 ƒ‡sxd = -3!x-4,   
ƒ‡s2d

3!
= -

1
24 ,

 ƒ–sxd = 2!x-3,   
ƒ–s2d

2!
= 2-3

=
1
23 ,

 ƒ¿sxd = -x-2,   ƒ¿s2d = -
1
22 ,

 ƒsxd = x-1,   ƒs2d = 2-1
=

1
2

,



Bir Taylor polinomundan bahsederken, n. dereceden yerine, n. mertebeden diyoruz,
çünkü ƒ(n)(a) sıfır olabilir. Örneğin, ƒ(x) = cos x’in  x = 0’daki ilk iki Taylor polinomu
P0(x) = 1 ve P1(x) = 1’dir. Birinci mertebe polinomun derecesi 1 değil, sıfırdır.

ƒ’nin x = a’daki lineerizasyonunun, a’nın bir komşuluğunda ƒ’nin en iyi lineerizasyo-
nunu vermesi gibi, yükesek mertebe Taylor polinomları da kendi derecelerine göre en iyi
polinom yaklaşımlarını verirler. (Alıştırma 32’ye bakın.)

ÖRNEK 2 için Taylor polinomlar› Bulmak 

ƒ(x) = ex’in x = 0’da ürettiği Tayor serisini ve Taylor polinomlarını bulun.

Çözüm

olduğundan 

buluruz. ƒ’nin x = 0’da ürettiği Taylor serisi

olarak elde edilir. Bu aynı zamanda ex’in Maclaurin serisidir. Bölüm 11.9’ da, serinin her x
için  ex’e yakınsadığını göreceğiz.

x = 0’daki n. mertebe Taylor polinomu

ile verilir. Şekil 11.12’ye bakın.

ÖRNEK 3 cos x için  Taylor polinomlar› Bulmak 

ƒ(x) =  cos x’in  x = 0’da ürettiği Taylor serisi ve polinomlarını bulun.

Pnsxd = 1 + x +
x2

2
+

Á
+

xn

n!
 .

 = a
q

k = 0
 
xk

k!
.

 = 1 + x +
x2

2
+

Á
+

xn

n!
+

Á

 ƒs0d + ƒ¿s0dx +

ƒ–s0d
2!

 x2
+

Á
+

ƒsnds0d
n!

 xn
+

Á

ƒs0d = e0
= 1, ƒ¿s0d = 1, Á , ƒsnds0d = 1, . Á

ƒsxd = ex, ƒ¿sxd = ex, Á , ƒsndsxd = ex, Á ,

ex

808 Bölüm 11: Sonsuz Diziler ve Seriler

TANIM n. Mertebe Taylor Polinomu 
ƒ, a’yı iç nokta olarak içeren bir aralıkta  k. mertebeden, k = 1, 2, …, N, türevleri
var olan bir fonksiyon olsun. 0’dan N’ye kadar olan herhangi bir n tam sayısı için
ƒ’nin x = a’da ürettiği  n. mertebe Taylor polinomu

ile verilir.

 +

ƒskdsad
k!

 sx - adk
+

Á
+

ƒsndsad
n!

 sx - adn .

 Pnsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2
+

Á

0.5

1.0

y � ex

0 0.5

1.5

2.0

2.5

3.0
y � P3(x)

y � P2(x)

y � P1(x)

1.0

x

y

–0.5

fiEK‹L 11.12 ƒ(x) = ex fonksiyonunun ve 
Taylor polinomlarının grafikleri. 
P1(x) = 1 + x
P2(x) = 1 + x + (x2@2!)
P3(x) = 1 + x + (x2@2!) + (x3@3!)
Merkez,  x = 0 civarındaki yakın uyuma
dikkat edin (Örnek 2).
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Çözüm Kosinüs ve türevleri şöyledir:

x = 0’da, kosinüsler 1 ve sinüsler 0, dolayısıyla

olur. ƒ’nin x = 0’da ürettiği Taylor serisi

olarak bulunur. Bu aynı zamanda cos x’in Maclaurin serisidir. Bölüm 11.9’ da, serinin her
x için cos x’e yakınsayacağını göreceğiz.

ƒ(2n+1)(0) 
 0 olduğundan mertebeleri 2n ve 2n + 1 olan Taylor polinomları aynıdır:

x = 0 civarında polinomların ƒ(x) 
 cos x’e ne kadar yaklaştıkları Şekil 11.13’te  görül-
mektedir. Grafiklerin sadece sağ tarafları verilmiştir, çünkü grafikler y-eksenine göre si-
metriktir.

P2nsxd = P2n + 1sxd = 1 -
x2

2!
+

x4

4!
-

Á
+ s -1dn 

x2n

s2nd!
.

= a
q

k = 0
 
s -1dkx2k

s2kd!
.

= 1 + 0 # x -
x2

2!
+ 0 # x3

+
x4

4!
+

Á
+ s -1dn 

x2n

s2nd!
+

Á

 ƒs0d + ƒ¿s0dx +

ƒ–s0d
2!

 x2
+

ƒ‡s0d
3!

 x3
+

Á
+

ƒsnds0d
n!

 xn
+

Á

ƒs2nds0d = s -1dn, ƒs2n + 1ds0d = 0.

sin x . ƒs2n + 1dsxd = s -1dn + 1 cos x, ƒs2ndsxd = s -1dn 

o  o

sin x, ƒs3dsxd = -cos x, ƒ–sxd = -sin x, ƒ¿sxd = cos x, ƒsxd = 

0 1

1
y � cos x

2

–1

–2

2 3 4 5 6 7 9

P0
P4 P8 P12 P16

P2 P6 P10 P14 P18

8
x

y

fiEK‹L 11.13 n → ∞ iken 

polinomları  cos x’e yakınsar. cos x’in keyfi derecede uzaktaki 
davranışlarını kosinüsün ve türevlerinin x = 0’ daki değerlerini
bilerek çıkarabiliriz (Örnek 3).

P2nsxd = a
n

k = 0
 
s -1dkx2k

s2kd!



ÖRNEK 4 Taylor serisi her x için yak›nsayan, fakat sadece x = 0’da ƒ(x)’e yak›nsayan bir ƒ fonksiyonu. 

fonksiyonunun (Şekil 11.14)  x = 0’da her mertebeden türevinin var olduğu ve (kolay ol-
masa da) her n için ƒ(n)(0) = 0 olduğu gösterilebilir. Bu, ƒ’nin x = 0’da ürettiği Taylor
serisinin 

olduğunu gösterir. Seri her x için  yakınsaktır (toplamı 0’dır), fakat sadece x = 0’da ƒ(x)’e
yakınsar.

 = 0 + 0 +
Á

+ 0 +
Á .

 = 0 + 0 # x + 0 # x2
+

Á
+ 0 # xn

+
Á

 ƒs0d + ƒ¿s0dx +

ƒ–s0d
2!

 x2
+

Á
+

ƒsnds0d
n!

 xn
+

Á

ƒsxd = e0, x = 0

e-1>x2

, x Z 0
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⎧
⎨
⎩

0 1 2 3 4

1

–1–2–3–4

y �
 e–1/x2

,  x � 0

0 ,       x � 0

x

y

fiEK‹L 11.14 ’nin sürekli genişlemesinin grafiği
orijinde o kadar düzdür ki oradaki bütün türevleri sıfırdır
(Örnek 4).

y = e-1>x2

Hala iki soru vardır:

1. Bir Taylor serisinin hangi x değerleri için üretici fonksiyonuna yakınsamasını bekle-
yebiliriz?

2. Bir fonksiyonun Taylor polinomları verilen bir aralıkta fonksiyona ne gibi bir kesin-
likle yaklaşımda bulunurlar?

Yanıtlar bir sonraki bölümde Taylor’un bir teoremiyle verilmektedir.

ALIfiTIRMALAR 11.8

Taylor Polinomlar›  Bulmak
1–8 alıştırmalarında, ƒ’nin a’da ürettiği 0, 1, 2 ve 3.üncü mertebeden
Taylor polinomlarını bulun.

1. 2.

3. 4.

5. 6.

7. 8. ƒsxd = 2x + 4, a = 0ƒsxd = 2x, a = 4

ƒsxd = cos x, a = p>4ƒsxd = sin x, a = p>4
ƒsxd = 1>sx + 2d, a = 0ƒsxd = 1>x, a = 2

ƒsxd = ln s1 + xd, a = 0ƒsxd = ln x, a = 1

x = 0 da Taylor Polinomlar›  Bulmak
(Maclaurin Serileri)
9–20 alıştırmalarındaki fonksiyonların Maclaurin serilerini bulun.

9. 10.

11. 12.

13. sin 3x 14. sin 
x
2

1
1 - x

1
1 + x

ex>2e-x
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15. 16.

17. 18.

19. 20.

Taylor Serilerini Bulmak
21–28 alıştırmalarında ƒ’nin x 
 a’da ürettiği Taylor serisini bulun.

21.

22.

23.

24.

25.

26.

27.

28.

Teori ve Al›flt›rmalar
29.

olduğunu göstermek için.  ex’in x = a’da ürettiği Taylor serisini
kullanın.

30. (Alıştırma 29’un devamı.) ex’in x = 1’de ürettiği Taylor serisini bu-
lun. Yanıtınızı Alıştırma 29’daki formülle karşılaştırın.

31. ƒ(x)’in x = a’da n mertebesine kadar türevleri var olsun. n. merte-
be Taylor polinomunun ve ilk n türevinin x = a’daki değerlerinin,
ƒ’nin ve ilk n türevinin x = a’daki değerlerine eşit olduğunu gös-
terin.

ex
= ea c1 + sx - ad +

sx - ad2

2!
+

Á d .

ƒsxd = 2x, a = 1

ƒsxd = ex, a = 2

ƒsxd = x>s1 - xd, a = 0

ƒsxd = 1>x2, a = 1

ƒsxd = 3x5
- x4

+ 2x3
+ x2

- 2, a = -1

ƒsxd = x4
+ x2

+ 1, a = -2

ƒsxd = 2x3
+ x2

+ 3x - 8, a = 1

ƒsxd = x3
- 2x + 4, a = 2

sx + 1d2x4
- 2x3

- 5x + 4

sinh x =

ex
- e-x

2
cosh x =

ex
+ e-x

2

5 cos px7 cos s -xd 32. Mertebesi n olan bütün polinomlar arasında, n. mertebe
Taylor polinomu en iyi yaklaşımı verir. ƒ(x)’in x = a’da merkez-
lenmiş bir aralıkta türetilebildiğini ve g(x) = b0 + b1(x – a) + … +
bn(x – a)n’in, b0,…, bn sabit katsayılar olmak üzere n. mertebeden
bir polinom olduğunu varsayın. E(x) = ƒ(x) – g(x) olsun. g üzerine

a.

b.

koşullarını koyarsak,

olduğunu gösterin. Yani, Pn(x) Taylor polinomu, x = a’da hem
hatası sıfır olan, hem de (x – a)n ile karşılaştırıldığında ihmal
edilebilen ve derecesi n’ye eşit veya n’den küçük olan tek poli-
nomdur.

Kuadratik Yaklafl›mlar
x = a’da iki kere türetilebilen bir ƒ(x) fonksiyonu tarafından üretilen
ve mertebesi 2 olan Taylor polinomuna ƒ’nin x = a’daki kuadratik
yaklaşımı denir. 33-38 alıştırmalarında, ƒ’nin x = 0’daki (a) lineeri-
zasyonunu (mertebesi 1 olan Taylor polinomu) ve (b) kuadratik yakla-
şımını bulun.

33. 34.

35. 36.

37. 38. ƒsxd = tan xƒsxd = sin x

ƒsxd = cosh xƒsxd = 1>21 - x2

ƒsxd = esin xƒsxd = ln scos xd

 +

ƒsndsad
n!

 sx - adn .

 gsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2
+

Á

lim
x:a

 
Esxd

sx - adn = 0,

Esad = 0

◊

x = a’daki yaklaşım hatası sıfır.

Hata (x – a)n ile karşılaştırıldığında
ihmal edilebilir.

Taylor Serisinin Yak›nsakl›¤›; Hata Tahmini 

Bu bölüm Bölüm 11.8’de  cevapsız bırakılan iki soruyu cevaplamaktadır:

1. Bir Taylor serisi ne zaman üretici fonksiyonuna yakınsar?

2. Bir fonksiyonun Taylor polinomları verilen bir aralıkta, fonksiyona ne kadar iyi bir
yaklaşımda bulunurlar?

Taylor Teoremi

Bu soruları aşağıdaki teoremle yanıtlayacağız.

11.9
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Taylor Teoremi Ortalama Değer Teoreminin bir genelleştirilmesidir (Alıştırma 39). Bu
bölümün sonunda Taylor teoreminin bir ispatı vardır.

Taylor teoremini uygularken, genellikle a’yı sabit tutup, b’ye bağımsız bir değişken
gibi bakmak isteriz.  Bu gibi durumlarda, b yerine x yazarsak, Taylor teoremini uygulamak
kolaylaşır. Bu değişiklikle teorem şu şekli alır:

TEOREM 22 Taylor Teoremi
ƒ  fonksiyonu ve  ƒ	, ƒ�, …, ƒ(n) türevleri [a, b] veya [b, a] aralıklarında sürekli
iseler  ve  ƒ(n) (a, b)  veya (b, a) aralığında türetilebiliyorsa, a ile b arasında

eşitliği sağlanacak şekilde bir c sayısı vardır.

 +

ƒsndsad
n!

 sb - adn
+

ƒsn + 1dscd
sn + 1d!

 sb - adn + 1 .

 ƒsbd = ƒsad + ƒ¿sadsb - ad +

ƒ–sad
2!

 sb - ad2
+

Á

Taylor Formülü
a’yı içeren bir I aralığında ƒ’nin her mertebeden türevi varsa, her pozitif n
tamsayısı ve I’daki her x için, 

(1)

dir.  Burada

(2)

dir.

Rnsxd =

f sn + 1dscd
sn + 1d!

 sx - adn + 1 for some c between a and x .

 +

ƒsndsad
n!

 sx - adn
+ Rnsxd ,

 ƒsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2
+

Á

Taylor teoremini bu şekilde ifade ettiğimizde, teorem,  her x P I için

olduğunu söyler. Rn(x) fonksiyonu  (n + 1). türev olan  ƒ(n + 1)’nin  a ve x’e bağlı olan ve
bunların  arasında bulunan bir c noktasındaki değeri ile tanımlanır. Denklem, istediğimiz
herhangi bir n değeri için, hem ƒ’nin o mertebede bir polinom yaklaşımını, hem de I aralı-
ğı boyunca o yaklaşımı kullanmanın vereceği hata için bir formül verir. 

(1) denklemine Taylor formülü denir. Rn(x) fonksiyonuna  n. mertebeden kalan veya
ƒ’nin I aralığındaki Pn(x) yaklaşımının hata terimi denir. Her x P I için, n → ∞ iken,
Rn(x) → 0 ise, ƒ’nin x = a’da ürettiği Taylor serisinin I aralığı üzerinde  ƒ’ye yakınsadığı-
nı söyler ve

yazarız. Aşağıdaki örnekte gösterildiği gibi çoğunlukla  c’deki değerini bilmeksizin Rn kalanı-
nı tahmin edebiliriz.

ƒsxd = a
q

k = 0
 
ƒskdsad

k!
 sx - adk .

ƒsxd = Pnsxd + Rnsxd .

(c, a ile b arasında bir sayı )
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ÖRNEK 1 için Taylor Serisi, Tekrar

ƒ(x) = ex’in x = 0’da ürettiği Taylor serisinin her reel x değerinde ƒ(x)’e yakınsadığını gös-
terin.

Çözüm Fonksiyonun I = (– , ) aralığında her mertebeden türevi vardır. ƒ(x) = ex ve
a = 0 ile (1) ve (2) denklemleri

ve

verir.  ex, x’in artan bir fonksiyonu olduğundan,  ec değeri e0 = 1 ile ex arasında bulunur. x
negatifse, c de negatiftir, dolayısıyla ec � 1 olur. x sıfırken, ex = 1  ve Rn(x) = 0 olur. x po-
zitifse, c de pozitiftir ve ec � ex olur. Yani,

ve

olur. Son olarak, 

olduğundan  olur ve seri her x için ex’e yakınsar. Böylece,

(3)

bulunur.

Kalan› Tahmin Etmek

Çoğunlukla, Örnek 1’de yaptığımız gibi Rn(x)’i tahmin etmek mümkündür. Bu tahmin
yöntemi o kadar uygundur ki, bunu, daha sonraki kullanımları için bir teorem olarak ifade
edeceğiz.

ex
= a

q

k = 0
 
xk

k!
= 1 + x +

x2

2!
+

Á
+

xk

k!
+

Á .

lim
n: q

Rnsxd = 0,

lim
n: q

 
xn + 1

sn + 1d!
= 0 for every x ,

ƒ Rnsxd ƒ 6 ex 
xn + 1

sn + 1d!
 when x 7 0.

ƒ Rnsxd ƒ …

ƒ x ƒ
n + 1

sn + 1d!
 when x … 0,

Rnsxd =
ec

sn + 1d!
 xn + 1 for some c between 0 and x .

ex
= 1 + x +

x2

2!
+

Á
+

xn

n!
+ Rnsxd

qq

ex

Bölüm 11.8, Örnek
2’deki polinom

Bölüm 11.1

TEOREM 23 Kalan› Tahmin Teoremi
x ve  a arasındaki her t için  olacak şekilde pozitif bir M sabiti
varsa, Taylor teoremindeki kalan terim Rn(x) 

eşitsizliğini sağlar. Bu koşullar her n için geçerliyse ve ƒ  Taylor teoreminin 
diğer koşullarını sağlıyorsa, seri ƒ(x)’e yakınsar.

ƒ Rnsxd ƒ … M 
ƒ x - a ƒ

n + 1

sn + 1d!
.

ƒ ƒsn + 1dstd ƒ … M

0 ile x arasında bir c için

x � 0 için

x � 0 için

her x için



Artık, Kalan Tahmin Teoreminin ve Taylor Teoreminin, yakınsaklık sorularını yanıtla-
mak için nasıl kullanıldıklarını gösteren örneklere bakmaya hazırız. Göreceğiniz gibi,
bunlar bir fonksiyona Taylor serilerinden biriyle yaklaşım yapılmasının hassaslığını belir-
lemekte de kullanılırlar.

ÖRNEK   2 sin x’in x = 0’daki Taylor Serisi

sin x’in  x = 0’daki Taylor serisinin her x için x’e yakınsadığını gösterin.

Çözüm Fonksiyon ve türevleri şöyledir:

Dolayısıyla,

olur. Serinin sadece tek kuvvetli terimleri vardır ve n = 2k + 1 için Taylor teoremi

verir. sin x’in bütün türevlerinin mutlak değerleri 1’den küçük veya 1’e eşittir, dolayısıyla
M = 1 ile Kalan Tahmin Teoremini uygulayarak

buluruz. k → ∞ iken, x’in değeri ne olursa olsun, olduğundan,
R2k + 1(x) → 0 olur ve sin x’in Maclaurin serisi her x için sin x’e yakınsar. Böylece, 

(4)

elde  edilir. 

ÖRNEK 3 cos x‘in  ’daki Taylor Serisi, Tekrar

cos x’in x 
 0’daki Taylor serisinin her x değerinde cos x’e yakınsadığını gösterin.

Çözüm cos x’in Taylor polinomuna (Bölüm 11.8, Örnek 3) kalan terimini ekleyerek
n = 2k ile cos x’in Taylor formülünü elde ederiz:

cos x = 1 -
x2

2!
+

x4

4!
-

Á
+ s -1dk 

x2k

s2kd!
+ R2ksxd .

x = 0

sin x = a
q

k = 0
 
s -1dkx2k + 1

s2k + 1d!
= x -

x3

3!
+

x5

5!
-

x7

7!
+

Á .

s ƒ x ƒ
2k + 2>s2k + 2d!d : 0

ƒ R2k + 1sxd ƒ … 1 #
ƒ x ƒ

2k + 2

s2k + 2d!
.

sin x = x -
x3

3!
+

x5

5!
-

Á
+

s -1dkx2k + 1

s2k + 1d!
+ R2k + 1sxd .

f s2kds0d = 0 and f s2k + 1ds0d = s -1dk .

ƒ(2k)sxd = s -1dk sin x,  o  ƒ–sxd =  ƒsxd =  

814 Bölüm 11: Sonsuz Diziler ve Seriler

ƒ(2k + 1)sxd = s -1dk cos x ,

   o

ƒ‡sxd = ƒ¿sxd = 
-  sin  x, -  cos  x,

sin  x, cos  x,

ve
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Kosinüsün türevlerinin hepsinin mutlak değerleri 1’den küçük veya 1’e eşit olduğundan,
M = 1  ile Kalan Tahmin Teoremi

verir. k → iken, her x değeri için, R2k → 0 bulunur. Bu nedenle, seri her x için cos x’e
yakınsar.

(5)

ÖRNEK 4 De¤iflken Dönüflümü ile bir Taylor Serisi Bulmak

cos 2x’in x = 0’daki Taylor serisini bulun.

Çözüm cos 2x’in Taylor serisini  cos x’in Taylor serisinde x yerine 2x yazarak bulabiliriz:

(5) denklemi  – � x � için geçerlidir, bu da – � 2x � için de geçerli olduğunu
gösterir, dolayısıyla yeni yaratılan seri her x için yakınsaktır. Alıştırma 45 serinin neden
gerçekten de  2x’in Taylor serisi olduğunu açıklamaktadır.

ÖRNEK 5 Bir Taylor Serisini Çarp›mla Bulmak 

x sin x’in x = 0’daki Taylor serisini bulun.

Çözüm x sin x’in  Taylor serisini  sin x’in  Taylor serisini  (Denklem 4 ) x ile çarparak bu-
labiliriz.

sin x serisi her  x için  yakınsak olduğundan yeni seri her  x için  yakınsaktır. Alıştırma
45,  serinin neden   x sin x’in  Taylor serisi olduğunu açıklamaktadır. 

Kesme Hatas›

ex’in x = 0’daki Taylor serisi her  x için ex’e yakınsar. Fakat hala ex’e, verilen bir has-
sasiyette yaklaşımda bulunmak için kaç tane terim kullanacağımıza karar vermemiz
gerekmektedir. Bu bilgiyi Kalan Tahmin Teoreminden elde ederiz.

 = x2
-

x4

3!
+

x6

5!
-

x8

7!
+

Á .

 x sin x = x ax -
x3

3!
+

x5

5!
-

x7

7!
+

Áb

qqqq

 = a
q

k = 0
s -1dk 

22kx2k

s2kd!
.

 = 1 -
22x2

2!
+

24x4

4!
-

26x6

6!
+

Á

 cos 2x = a
q

k = 0
 
s -1dks2xd2k

s2kd!
= 1 -

s2xd2

2!
+

s2xd4

4!
-

s2xd6

6!
+

Á

cos x = a
q

k = 0
 
s -1dkx2k

s2kd!
= 1 -

x2

2!
+

x4

4!
-

x6

6!
+

Á .

q

ƒ R2ksxd ƒ … 1 #
ƒ x ƒ

2k + 1

s2k + 1d!
.

x yerine 2x alınmış
(5) denklemi



ÖRNEK 6 e’yi 10–6’dan  daha küçük bir hatayla hesaplayın.

Çözüm x = 1 alarak Örnek 1’in çözümünü kullanıp

yazabiliriz. Burada

ile verilir. Bu örneğin amaçları için, e � 3 olduğunu bildiğimizi varsayalım. Dolayısıyla,

olduğundan eminiz, çünkü , 0 � c � 1 için, 1 � ec � 3’dür.
Denemeyle, 1@9! � 10–6 ve 3@10! � 10–6 olduğunu buluruz. Yani (n + 1)’i en az 10

veya n’yi en az  9 almamız gerekir. 10–6’dan küçük bir hatayla

buluruz.

ÖRNEK 7 Hangi x değerleri için sin x yerine, büyüklüğü 3 � 10–4’ten fazla olmayan bir
hatayla x – (x3@3!) yazabiliriz?

Çözüm Burada, sin x’in Taylor serisinin, sıfırdan farklı her x değeri için bir alterne  seri
olmasının avantajını kullanacağız. Alterne Seriler Tahmin Teoremine göre (Bölüm 11.6) 

serisini (x3@3!)’den sonra kesmenin getireceği hata 

değerinden büyük olmayacaktır. Dolayısıyla,

ise, hata 3 � 10–4’e eşit veya bundan daha küçük olacaktır.
Alterne Seriler Tahmin Teoremi Kalan Tahmin Teoreminin söylemediği bir şeyi daha

söyler: yani, sin x için x – (x3@3!) tahmini, x pozitif olduğunda  gerçek değerden küçük
olan bir tahmindir,  çünkü  x5@120 pozitiftir.

Şekil 11.15 sin x grafiğiyle birlikte birkaç Taylor polinomu yaklaşımını da göster-
mektedir.  P3(x) = x – (x3@3!)’in grafiği –1 � x � 1  iken neredeyse sinüs eğrisinden ayırt
edilememektedir.

ƒ x ƒ
5

120
6 3 * 10-4 or ƒ x ƒ 6

52360 * 10-4
L 0.514.

` x5

5!
` =

ƒ x ƒ
5

120
.

sin x = x -
x3

3!
  +

x5

5!
-

Á

e = 1 + 1 +
1
2

+
1
3!

+
Á

+
1
9!

L 2.718282.

1
sn + 1d!

6 Rns1d 6
3

sn + 1d!

Rns1d = ec 
1

sn + 1d!

e = 1 + 1 +
1
2!

+
Á

+
1
n!

+ Rns1d ,
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0 ile 1 arasındaki bir c için

Güvenlik için,
aşağı yuvarlanmış

--
--

--

veya
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Kalan Tahmin Teoreminin verdiği tahminin Alterne Serilen Tahmin Teoreminin
verdiği tahminle ne zaman uyuşacağını merak edebilirsiniz. 

yazarsak, Kalan Tahmin Teoremi, daha kötü bir sonuç olan

değerini verir. Fakat x – (x3@3!) = 0 + x + 0x2 – (x3@3!) + 0x4’ün üçüncü mertebe olduğu
kadar dördüncü mertebeden de bir Taylor polinomu olduğunu hatırlarsak,

olur ve  M =  1 ile Kalan Tahmin Teoremi

verir. Bu, Alterne  Seriler Tahmin Teoremiyle bulduğumuz sonuçtur.

Taylor Serilerini Birlefltirmek

Yakınsaklık aralıklarının kesişimlerinde, Taylor serileri toplanabilir, çıkarılabilir, sabitlerle
çarpılabilir ve sonuçlar yine Taylor serileri olur. ƒ(x) + g(x)’in Taylor serisi ƒ(x) ve g(x)’in
Taylor serilerinin toplamıdır, çünkü ƒ + g’nin n. türevi ƒ(n) + g(n)’dir. Böylece
(1 + cos 2x)@2’nin Taylor serisini cos 2x’in Taylor serisine 1 ekleyip, birleştirilmiş sonucu
2’ye bölerek bulabiliriz. sin x + cos x’in Taylor serisi sin x ve cos x’in Taylor serilerinin te-
rim-terim toplanmış halidir.

ƒ R4 ƒ … 1 #  
ƒ x ƒ

5

5!
=

ƒ x ƒ
5

120
.

sin x = x -
x3

3!
+ 0 + R4 ,

ƒ R3 ƒ … 1 #  
ƒ x ƒ

4

4!
=

ƒ x ƒ
4

24
,

sin x = x -
x3

3!
+ R3 ,

1

y � sin x

2 3 4 8 9

P1 P5

P3 P7 P11 P15 P19

P9 P13 P17

5 6 70

1

2

–1

–2

x

y

fiEK‹L 11.15

polinomları n → ∞ iken sin x’e yakınsarlar. P3(x)’in x � 1 için
sinüs eğrisine ne kadar yakın olduğuna dikkat edin (Örnek 7) 

P2n + 1sxd = a
n

k = 0
 
s -1dkx2k + 1

s2k + 1d!



Euler Özdeflli¤i

Hatırlayacağınız gibi, bir kompleks (karmaşık) sayı, a ve b reel sayılar ve  
olmak üzere, a + bi şeklinde bir sayıdır. ex’in Taylor serisinde x = iu (u reel) alır ve sonucu
basitleştirmek için,

gibi bağıntıları kullanırsak

Bu, olduğunu ispatlamaz, çünkü henüz e’nin kompleks bir
kuvvetini almanın ne anlama geldiğini tanımlamadık. Fakat ’nın bildiğimiz diğer
şeylerle nasıl uyum sağladığını gösterir.

eiu
eiu

= cos u + i sin u

 = a1 -
u2

2!
+
u4

4!
-
u6

6!
+

Áb + i au -
u3

3!
+
u5

5!
-

Áb = cos u + i sin u .

 eiu
= 1 +

iu
1!

+
i2u2

2!
+

i3u3

3!
+

i4u4

4!
+

i5u5

5!
+

i6u6

6!
+

Á

i2
= -1, i3

= i2i = - i, i4
= i2i2

= 1, i5
= i4i = i ,

i = 2-1.
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TANIM

Herhangi bir u reel sayısı için,  ’dır. (6)eiu
= cos u + i sin u

Euler özdeşliği denilen (6) denklemi herhangi bir a + bi kompleks sayısı için ’yi
olarak yazmamızı sağlar. Özdeşliğin  bir sonucu 

eip = –1 

denklemidir. Bu denklem  eip + 1 = 0 şeklinde yazıldığında  matematikteki en önemli beş
sabiti bir araya toplar.

Taylor Teoreminin Bir ‹spat›

Taylor teoremini  a � b olduğunu varsayarak ispatlayacağız.  a � b için ispat da aynıdır. 

Taylor polinomu ve bunun ilk n tane türevi, x = a’da ƒ fonksiyonuna ve onun ilk n türevine
uyarlar. K bir sabit olmak üzere, K(x – a)n + 1 gibi bir terim eklersek bu uyumu bozmayız,
çünkü böyle bir terim ve bu terinim ilk n türevi x = a’da sıfırdır. Yeni fonksiyon

ve bunun ilk n türevi x = a’da ƒ’ye ve ilk n türevine uyacaktır.
Şimdi y = fn(x) eğrisinin x = b’de esas eğri y = ƒ(x)’e uymasını sağlayacak  özel bir K

değeri seçelim. Sembolik olarak,

(7)

yazılır. 

ƒsbd = Pnsbd + Ksb - adn + 1, or K =

ƒsbd - Pnsbd
sb - adn + 1 .

fnsxd = Pnsxd + Ksx - adn + 1

Pnsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2
+

Á
+

f sndsad
n!

 sx - adn

ea # ebi
ea + bi

veya
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(7) denklemiyle belirlenmiş K ile 

fonksiyonu, [a, b] aralığında her x için, orijinal ƒ fonksiyonu ile yaklaşım fonksiyonu fn

arasındaki farkı ölçer. 
Şimdi Rolle teoremini kullanacağız (Bölüm 4.2). İlk olarak, F(a) = F(b) = 0 olduğun-

dan ve hem  F hem de F	 türevi  [a, b]’da sürekli olduklarından 

(a, b)’deki  bir  c1 için       F	(c1) = 0

olduğunu biliyoruz. Sonra, F	(a) = F	(c1) = 0 olduğundan ve hem F	 hem de F� türevleri
[a, c1]’ de sürekli olduklarından 

(a, c1)’deki  bir c2 için       F�(c2) = 0

olduğunu biliyoruz. Rolle Teoremini  F�, F�, …, F(n – 1)’e art arda uygulamak  

(a, c2)’de        F�(c3) = 0       olacak şekilde   bir   c3

(a, c3)’de        F(4)(c4) = 0       olacak şekilde   bir   c4

(a, cn – 1)’de        F(n)(cn) = 0       olacak şekilde   bir   cn

bulunduğunu gösterir. Son olarak, F(n) [a, cn]’de sürekli ve (a, cn)’de türetilebilir olduğun-
dan  ve F(n)(a) = F(n)(cn) = 0 olduğundan Rolle Teoremi,  (a, cn) aralığında

F(n + 1) (cn + 1) = 0 (8)

olacak şekilde bir cn + 1 sayısı bulunduğunu söyler. F(x) = ƒ(x) – Pn(x) – K(x – a)n + 1’in
toplam  n + 1 kere türevini alırsak,

(9)

buluruz. (8) ve (9) denklemleri birlikte

olduğunu gösterir. (7) ve (10) denklemleri ise

olduğunu gösterir. Bu da ispatı tamamlar.

ƒsbd = Pnsbd +

ƒsn + 1dscd
sn + 1d!

 sb - adn + 1 .

K =

ƒsn + 1dscd
sn + 1d!
 for some number c = cn + 1 in sa, b

F sn + 1dsxd = ƒsn + 1dsxd - 0 - sn + 1d!K .

o

Fsxd = ƒsxd - fnsxd

ALIfiTIRMALAR 11.9

De¤iflken Dönüflümü  ile  Taylor Serileri 
1–6 alıştırmalarındaki fonksiyonların  x = 0’da Taylor serilerini bul-
mak için değişken dönüşümü kullanın (Örnek 4’teki gibi).

1. 2. 3.

4. 5. 6. cos Ax3>2>22 Bcos 2x + 1sin apx
2
b

5 sin s -xde-x>2e-5x

Daha Fazla Taylor Serisi
7–18 alıştırmalarındaki fonksiyonların x = 0’daki Taylor serilerini bulun.

7. 8. 9.

10. 11. 12. x2 cos sx2dx cos pxsin x - x +

x3

3!

x2

2
- 1 + cos xx2 sin xxex

(a, b)’de bir c = cn + 1 sayısı için    (10)



13. (İpucu: )

14. 15. 16.

17. 18.

Hata Tahmini
19. Yaklaşık olarak hangi x değerlerinde sin x yerine büyüklüğü

5 � 10–4’ten fazla olmayan bir hatayla x – (x3@6) yazabilirsiniz?
Yanıtınızı açıklayın.

20. cos x yerine 1 – (x2@2) yazılırsa ve u x u � 0.5 ise, hata hakkında
ne gibi bir tahmin yapılabilir? 1 – (x2@2) çok mu fazla, yoksa çok
mu azdır? Yanıtınızı açıklayın.

21. u x u � 10–3 iken, sin x = x yaklaşımı ne kadar yakındır? Hangi x
değerlerinde  x � sin x olur?

22. x küçükken yaklaşımı kullanılır.
u x u � 0.01 iken hatayı tahmin edin.

23. x küçükken yaklaşımı kullanılır. u x u � 0.1
iken hatayı tahmin etmek için Kalan Tahmin Teoremini kullanın.

24. (Alıştırma 23’ün devamı.) x � 0 iken, ex serisi alterne bir seridir.
Alterne Seri Teoremini kullanarak  –0.1 � x � 0 iken ex yerine
1 + x + (x2@2) yazmanın vereceği hatayı tahmin edin. Tahmininizi
Alıştırma 23’te bulduğunuzla karşılaştırın.

25. u x u � 0.5 iken, sinh x = x + (x3@3!) yaklaşımının hatasını tahmin
edin. (İpucu: R3 değil, R4 kullanın.)

26. 0 � h � 0.01 iken, eh yerine büyüklüğü h’nin %0.6’sından büyük
olmayan bir hatayla 1 + h yazılabileceğini gösterin. e0.01 = 1.01
alın.

27. Hangi pozitif x değerlerinde ln (1 + x) yerine, x’in büyüklüğünün
en çok  %1’i kadar bir hatayla,  x yazabilirsiniz?

28. x = 1’de tan–1 x’in Maclaurin serisini kullanarak p@4’ü tahmin et-
meyi planlıyorsunuz. Alterne Seriler Tahmin Teoremini kulla-
narak, tahmininizin 2 ondalık basamak doğrulukta olduğundan
emin olmak için serinin kaç terimini almanız gerektiğini belir-
leyin.

29. a. sin x’in Taylor serisini ve Alterne Seriler Tahmin Teoremini
kullanarak

olduğunu gösterin.

b. –5 � x � 5 için ƒ(x) = (sin x)@x ile y = 1 – (x2@6) ve y = 1
fonksiyonlarının grafiklerini birlikte çizin. Grafikler arasında-
ki ilişkiyi yorumlayın.

30. a. cos x’in Taylor serisini ve Alterne Seriler Tahmin Teoremini
kullanarak 

olduğunu gösterin. (Bu, Bölüm 2.2, Alıştırma 52’deki eşitsiz-
liktir.)

1
2

-

x2

24
6

1 - cos x

x2 6

1
2

, x Z 0.

1 -

x2

6
6

sin x
x 6 1, x Z 0.

ex
= 1 + x + sx2>2d

21 + x = 1 + sx>2d

2
s1 - xd3

1
s1 - xd2

x ln s1 + 2xdx2

1 - 2x
sin2 x

cos2 x = s1 + cos 2xd>2.cos2 x b. –9 � x � 9 için ƒ(x) = (1 – cos x)@x2 ile y = (1@2) – (x2@24) ve
y = (1@2) fonksiyonlarının grafiklerini birlikte çizin. Grafikler
arasındaki ilişkiyi yorumlayın.

Maclaurin Serilerini Bulmak ve Tan›mlamak
x = 0’daki Taylor serisinin bir başka adının Maclaurin serisi olduğunu
hatırlayın. 31–34 alıştırmalarındaki serilerden her biri bir ƒ(x)
fonksiyonunun bir noktadaki Maclaurin serisidir. Hangi fonksiyon ve
hangi nokta? Serinin toplamı nedir?

31.

32.

33.

34.

35. ex ve sin x’in Maclaurin serilerini çarparak ex sin x’in Maclaurin
serisinin sıfırdan farklı ilk beş terimini bulun.

36. ex ve cos x’in Maclaurin serilerini çarparak ex cos x’in Maclaurin
serisinin sıfırdan farklı ilk beş terimini bulun.

37. sin2 x = (1 – cos 2x)@2 bağıntısını kullanarak sin2 x’in Maclaurin
serisini bulun. Sonra bu serinin türevini alarak 2 sin x cos x’in
Maclaurin serisini bulun. Bunun sin 2x serisi olup olmadığını
kontrol edin.

38. (Alıştırma 37’nin devamı.) cos2 x = cos 2x + sin2 x bağıntısını kul-
lanarak cos2 x için bir kuvvet serisi elde edin.

Teori ve Örnekler
39. Taylor Teoremi ve Ortalama Değer Teoremi Ortalama Değer

Teoreminin (Bölüm 4.2, Teorem 4) nasıl Taylor Teoreminin özel
bir durumu olduğunu açıklayın.

40. Büküm noktalarında lineerizasyon  İki kere türetilebilen bir
ƒ(x) fonksiyonunun grafiğinin x = a’da bir büküm noktası varsa,
ƒ’nin x = a’daki lineerizasyonunun aynı zamanda ƒ’nin x = a’daki
kuadratik yaklaşımı olduğunu gösterin. Bu, teğetlerin büküm
noktalarına neden o kadar iyi uyum sağladıklarını açıklar.

41. (İkinci) ikinci türev testi Aşağıdaki testi doğrulamak için

denklemini kullanın. 
ƒ’nin sürekli birinci ve ikinci türevlerinin var ve ƒ	(a) = 0

olduğunu varsayın.

a. İçi a’yı kapsayan bir aralık boyunca ƒ� � 0 ise, ƒ’nin a’da  bir
yerel  maksimumu vardır;

b. İçi a’yı kapsayan bir aralık boyunca ƒ� � 0 ise, ƒ’nin a’da bir
yerel minimumu vardır.

ƒsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sc2d
2

 sx - ad2

p -

p2

2
+

p3

3
-

Á
+ s -1dk - 1 

pk

k
+

Á

p

3
-

p3

33 # 3
+

p5

35 # 5
-

Á
+

s -1dkp2k + 1

32k + 1s2k + 1d
+

Á

1 -

p2

42 # 2!
+

p4

44 # 4!
-

Á
+

s -1dkspd2k

42k # s2k!d
+

Á

s0.1d -

s0.1d3

3!
+

s0.1d5

5!
-

Á
+

s -1dks0.1d2k + 1

s2k + 1d!
+

Á
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42. Kübik bir yaklaşım a = 0 ve n = 3 ile Taylor formülünü kulla-
narak ƒ(x) = 1@(1 – x)’in x = 0’daki kübik yaklaşımını bulun.
ux u � 0.1 iken yaklaşımdaki hatanın büyüklüğü için bir üst sınır
bulun.

43. a. n = 2 ile Taylor formülünü kullanarak ƒ(x) = (1 + x)k’ye (k bir
sabit) x = 0’daki kuadratik yaklaşımı bulun.

b. k = 3 ise, [0, 1] aralığındaki yaklaşık olarak hangi x
değerlerinde, kuadratik yaklaşımdaki hata 1@100’den küçük
olur?

44. P’ye yaklaşımları iyileştirmek  

a. P, p’ye n ondalık basamak kesinlikte bir yaklaşım olsun.
P + sin P’nin 3n ondalık basamak kesinlikte bir yaklaşım ve-
receğini gösterin. (İpucu: P = p + x alın.)

b. Bunu bir hesap makinesiyle deneyin.

45. tarafından üretilen Taylor serisi 
serisidir. Yakınsaklık yarıçapı c � 0 olan bir

kuvvet serisiyle tanımlanan bir fonksiyonun, (–c, c)
aralığının her noktasında fonksiyona yakınsayan bir Taylor serisi
vardır. tarafından üretilen Taylor serisinin

serisinin kendisi olduğunu göstererek bunu gösterin. 
Bunun hemen görülen bir sonucu, Yakınsak kuvvet serilerin

türevlerinin alınması veya integrasyonuyla elde edilen serilerin,
temsil ettikleri fonksiyonların ürettiği Taylor serileri olmaları gi-
bi, Taylor serilerini x’in kuvvetleri ile çarpılmasından elde edilen

ve

gibi serilerdir.

46. Çift fonksiyonların ve tek fonksiyonların Taylor serileri (Bö-
lüm 11.7, Alıştırma 45’in devamı.) fonksiyonu-
nun açık bir (–c, c) aralığındaki her x için yakınsadığını varsayın.
Aşağıdakileri gösterin.

a. ƒ çiftse, a1 = a3 = a5 = … = 0’dır; yani ƒ’nin serisi sadece x’in
çift kuvvetlerini içerir.

b. a0 = a2 = a4 = … = 0’dır; yani ƒ’nin serisi sadece x’in tek kuv-
vetlerini içerir.

47. Periyodik fonksiyonların Taylor polinomları

a. Her x için uƒ(x) u� M olacak şekilde pozitif bir M sabitinin var
olduğunu göstererek, her sürekli periyodik  ƒ(x), –� � x � �,
fonksiyonunun büyüklüğünün sınırlı olduğunu gösterin.

b. ƒ(x) = cos x’in ürettiği pozitif dereceli her Taylor polinomunun
grafiğinin  ux u arttıkça cos x’in grafiğinden uzaklaşması ge-
rektiğini gösterin. Bunu Şekil 11.13’te görebilirsiniz. sin x’in
Taylor polinomları da benzer şekilde davranır (Şekil 11.15). 

ƒsxd = gq

n=0 an xn

x2ex
= x2

+ x3
+

x4

2!
+

x5

3!
+

Á ,

x sin x = x2
-

x4

3!
+

x6

5!
-

x8

7!
+

Á

gq

n=0 an xn
ƒsxd = gq

n=0 an xn

gq

n=0 an xn
gq

n=0 an xn
ƒsxd = gq

n=0 an xn

48. a. y = (1@3) – (x2)@5 ve y = (x – tan–1x)@x3 eğrilerinin grafiklerini
y = 1@3 eğrisiyle birlikte çizin.

b. Gördüklerinizi bir Taylor serisiyle açıklayın.

nedir?

Euler Özdeflli¤i 
49. e’nin aşağıdaki kuvvetlerini a + bi şeklinde yazmak için (6)

denklemini kullanın.

a. b. c.

50. (6) Denklemini kullanarak

olduğunu gösterin.

51. Alıştırma 50’deki bağıntıları eiu ve e–iu’nın Taylor  serilerini bir-
leştirerek doğrulayın.

52. Aşağıdakileri gösterin.

a. b.

53. ex ve sin x’in Taylor serilerini çarparak, ex sin x’in Taylor serisinin
x5’e kadar olan terimlerini bulun. Bu seri

serisinin sanal (imajiner) kısmıdır. Bunu yanıtınızı kontrol etmek-
te kullanın. Hangi x değerleri için bu seri ex sin x’e yakınsamalı-
dır?

54. a ve b reel olmak üzere, e(a + ib)x’i

denklemiyle tanımlarız. Bu denklemin sağ tarafının türevini alarak

olduğunu gösterin. Yani bildiğimiz (d@dx)ekx = kekx kuralı komp-
leks k’ler için de geçerlidir.

55. eiu’nın tanımını kullanarak reel u, u1 ve u2 sayıları için aşağıdaki-
leri gösterin.

a. b.

56. Kompleks iki a + ib ve c + id sayısı ancak ve ancak a = c ve
b = d ise eşittir. Bunu kullanarak, C = C1 + iC2 kompleks bir in-
tegrasyon sabiti olmak üzere

eşiğinden

integrallerini hesaplayın.

L
e sa + ibdx dx =

a - ib

a2
+ b2 e sa + ibdx

+ C ,

L
e ax cos bx dx and

L
e ax sin bx dx

e-iu
= 1>eiu .eiu1eiu2

= eisu1 +u2d,

d
dx

 e sa + ibdx
= sa + ibde sa + ibdx .

e sa + ibdx
= eax # eibx

= eaxscos bx + i sin bxd .

ex # eix
= e s1 + idx .

sinh iu = i sin u .cosh iu = cos u ,

cos u =

eiu
+ e-iu

2
and sin u =

eiu
- e-iu

2i
.

e-ip>2eip>4e-ip

lim
x:0

 
x - tan-1 x

x3  ?

T

T

ve

ve



B‹LG‹SAYAR ARAfiTIRMALARI
Lineer, Kuadratik ve Kübik Yaklafl›mlar
n = 1 ve a = 0 ile Taylor formülü bir fonksiyonun x = 0’daki lineerizas-
yonunu verir. n = 2 ve n = 3 ile, standart kuadratik ve kübik yaklaşım-
ları elde ederiz. Bu alıştırmalarda, bu yaklaşımlarla ilgili hataları araş-
tıracağız. İki sorunun yanıtını arıyoruz:

a. Hangi x değerleri için fonksiyon yerine,  10–2’den küçük bir hata
ile,  söz konusu yaklaşımlar yazılabilir?

b. Belirlenen aralıkta fonksiyon yerine söz konusu yaklaşımları
almakla  yapacağımız  maksimum hata nedir?

Bir BCS kullanarak, 57–62 alıştırmalarında verilen fonksiyonlar
ve aralıklar için (a) ve (b)’deki soruları yanıtlamak için aşağıdaki
adımları gerçekleştirin.

Adım 1: Fonksiyonu belirtilen aralıkta çizin.

Adım 2: x = 0’daki P1(x), P2(x) ve P3(x) Taylor polinomlarını bu-
lun.

Step 3: Her Taylor polinomunun kalanıyla ilişkili olan (n + 1).
türevi ƒ(n + 1)(c)’yi hesaplayın. Türevi, verilen aralıkta c’nin bir
fonksiyonu olarak çizin ve maksimum mutlak değeri M’yi tahmin
edin.

Step 4: Her polinomun Rn(x) kalanını hesaplayın. ƒ(n + 1)(c) yeri-
ne Adım 3’teki M tahminini kullanarak, Rn(x)’in grafiğini çizin.
(a) sorusunu yanıtlayan x değerlerini bulun.

Step 5: Tahmin ettiğiniz hatayı gerçek hata
ile, En(x)’in grafiğini belirlenen aralıkta

çizerek karşılaştırın. Bu (b) sorusunu yanıtlamaya yardımcı ola-
caktır.

Step 6: Fonksiyonun ve üç Taylor yaklaşımının grafiklerini bir-
likte çizin. Grafiklerin 4 ve 5 adımlarında bulduklarınızla ilişkisi-
ni tartışın.

57.

58.

59.

60.

61.

62. ƒsxd = ex>3 sin 2x, ƒ x ƒ … 2

ƒsxd = e-x cos 2x, ƒ x ƒ … 1

ƒsxd = scos xdssin 2xd, ƒ x ƒ … 2

ƒsxd =

x

x2
+ 1

, ƒ x ƒ … 2

ƒsxd = s1 + xd3>2, -

1
2

… x … 2

ƒsxd =

1

21 + x
, ƒ x ƒ …

3
4

Ensxd = ƒ ƒsxd - Pnsxd ƒ
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Kuvvet Serilerinin Uygulamalar›  

Bu bölüm kuvvet ve kök bulmada kullanılan binom serilerini tanıtmakta ve bazen serile-
rin, bir başlangıç değer problemine yaklaşımda bulunmakta, elemanter olmayan integral-
lerin hesaplanmasında ve belirsiz formlara yol açan  limitlerin hesaplanmasında, nasıl kul-
lanıldığını göstermektedir. tan–1 x’in Taylor serisinin bir çıkarılışını verecek ve sık
kullanılan seriler için bir referans tablosuyla bölümü bitireceğiz.

Kuvvetler ve Kökler ‹çin Binom Serileri

m bir sabitken,  ƒ(x) = (1 + x)m’nin ürettiği Taylor serisi

(1)

ile verilir. Binom serisi denilen bu seri u x u � 1 için mutlak yakınsaktır. Seriyi türetmek

+

msm - 1dsm - 2d Á sm - k + 1d
k!

 xk
+

Á .

1 + mx +

msm - 1d
2!

 x2
+

msm - 1dsm - 2d
3!

 x3
+

Á

11.10



11.10 Kuvvet Serilerinin Uygulamalar› 823

için, önce fonksiyonu ve türevlerini yazarız:

Sonra bunları x = 0’da hesaplar ve bu değerleri Taylor serisi formülüne koyarak (1) denkle-
mini elde ederiz.

m sıfıra eşit veya sıfırdan büyük bir tamsayı ise, seri (m + 1) terimden sonra durur,
çünkü k = m + 1’den sonraki terimler sıfırdır.

m pozitif bir tamsayı veya sıfır değilse, seri sonsuzdur ve u x u � 1 için yakınsaktır. Ne-
denini anlamak için, uk’yı xk’yı içeren terim olarak alın. Sonra mutlak yakınsaklık için
Oran Testini uygulayarak

k → ∞

olduğunu görün. 
Binom serilerini türetişimiz sadece bunun (1 + x)m tarafından üretildiğini ve u x u � 1

için yakınsadığını göstermektedir. Türetiş serinin (1 + x)m’ye yakınsadığını göstermez.
Seri bu fonksiyona yakınsar, fakat bunu ispatsız kabul edeceğiz.

` uk + 1
uk
` = ` m - k

k + 1
 x ` : ƒ x ƒ as k : q .

 ƒskdsxd = msm - 1dsm - 2d Á sm - k + 1ds1 + xdm - k .

 o

 ƒ‡sxd = msm - 1dsm - 2ds1 + xdm - 3

 ƒ–sxd = msm - 1ds1 + xdm - 2

 ƒ¿sxd = ms1 + xdm - 1

 ƒsxd = s1 + xdm

Binom Serisi 
–1 � x � 1 için

ve

olmak üzere

k � 3 için  am
k
b =

msm - 1dsm - 2d Á sm - k + 1d
k!

 for k Ú 3.

am
1
b = m, am

2
b =

msm - 1d
2!

,

s1 + xdm
= 1 + a

q

k = 1
 am

k
b  xk ,

ÖRNEK 1 Binom Serisini Kullanmak 

m = –1 ise

ve

olur.a-1

k
b =

-1s -2ds -3d Á s -1 - k + 1d
k!

= s -1dk ak!
k!
b = s -1dk .

a-1

1
b = -1, a-1

2
b =

-1s -2d
2!

= 1,

dir.



Bu katsayı değerleri ve x yerine –x ile  binom formülü, bildiğimiz  

geometrik serisini verir.

ÖRNEK 2 Binom Serisini Kullanmak 

Bölüm 3.8, Örnek 1’den  küçük u x u’ler için olduğunu biliyoruz.
m = 1@2 ile binom serisi, Alterne Seriler Tahmin Teoreminden gelen hata tahminleriyle bir-
likte, kuadratik ve daha yüksek mertebeden yaklaşımları da verir:

x’e değişken dönüşümü uygulamak başka yaklaşımları da verir. Örneğin,

bulunur.

Diferansiyel Denklemlerin ve Bafllang›ç De¤er Problemlerinin 
Kuvvet Serisi Çözümleri

Bir başlangıç değer problemi veya diferansiyel denklemin çözümü için basit bir ifade bula-
mazsak, çözüm hakkında başka yollardan bilgi almaya çalışırız. Bunun bir yolu çözümün
bir kuvvet serisi temsilini bulmaya çalışmaktır. Eğer bulabilirsek, hemen çözümün polinom
yaklaşımları için bir kaynak elimize geçer, bu da aradığımız tek şey olabilir. İlk örnek (Ör-
nek 3), Bölüm 9.2’nin yöntemleriyle çözülebilecek bir birinci derece lineer diferansiyel
denklemle ilgilenmektedir. Örnek, bundan haberimiz yokmuş gibi, denklemi bir kuvvet se-
risiyle nasıl çözeceğimizi gösterir. İkinci örnek (Örnek 4) daha önce gördüğümüz yöntem-
lerle çözülemeyen bir denklemle uğraşır.

ÖRNEK 3 Bir Bafllang›ç De¤er Probleminin Seri Çözümü

Aşağıdaki başlangıç değer problemini çözün.

Çözüm

(2)

şeklinde bir çözüm olduğunu varsayarız.

y = a0 + a1 x + a2 x2
+

Á
+ an - 1x

n - 1
+ an xn

+
Á .

y¿ - y = x, ys0d = 1.

Küçük x2  için 1 – x2 ≈ 1 – x2

2
 – x4

8

Küçük 1
x
  yani büyük x için 1 – 1

x
 ≈ 1 – 1

2x
 – 1

8x2

 = 1 +
x
2

-
x2

8
+

x3

16
-

5x4

128
+

Á .

+

a1
2
b a- 1

2
b a- 3

2
b a- 5

2
b

4!
 x4

+
Á

s1 + xd1>2
= 1 +

x
2

+

a1
2
b a- 1

2
b

2!
 x2

+

a1
2
b a- 1

2
b a- 3

2
b

3!
 x3

21 + x L 1 + sx>2d

s1 + xd-1
= 1 + a

q

k = 1
s -1dkxk

= 1 - x + x2
- x3

+
Á

+ s -1dkxk
+

Á .
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Amacımız, hangi  ak  katsayıları için, serinin ve 

(3)

birinci türevinin, verilen diferansiyel denklemi ve başlangıç koşulunu sağladığını bul-
maktır. y	 – y serisi (2) ve (3) denklemlerindeki serilerin farkıdır:

(4)

y	 – y = x denklemini sağlayacaksa, (4) Denklemindeki seri x’e eşit olmalıdır. Bölüm 11.7,
Alıştırma 45’te gördüğünüz gibi, kuvvet serisi temsilleri tek olduğu için, (4) Denkle-
mindeki katsayılar aşağıdaki denklemleri sağlamalıdır:

Ayrıca, (2) Denkleminden x = 0 iken, y = a0 olduğunu görebiliriz, yani a0 = 1’ dir (bu
başlangıç koşuludur). Hepsini bir araya koyarsak,

buluruz. Bu katsayı değerlerini y denkleminde (2 Denklemi) yerine koymak

verir. Başlangıç değer probleminin çözümü  y = 2ex – 1 – x’tir. 
Kontrol için, 

ve

olduğunu görürüz.

ÖRNEK 4 Bir Diferansiyel Denklemi Çözmek

Aşağıdaki denklemin bir kuvvet serisi çözümünü bulun:

y� + x2y = 0 (5)

y¿ - y = s2ex
- 1d - s2ex

- 1 - xd = x .

ys0d = 2e0
- 1 - 0 = 2 - 1 = 1

 = 1 + x + 2sex
- 1 - xd = 2ex

- 1 - x .

 
= 1 + x + 2 ax2

2!
+

x3

3!
+

Á
+

xn

n!
+

Áb
('''''')''''''*

the Taylor series for ex
- 1 - x

 y = 1 + x + 2 # x2

2!
+ 2 # x3

3!
+

Á
+ 2 # xn

n!
+

Á

 a3 =

a2

3
=

2
3 # 2

=
2
3!

, Á , an =

an - 1
n =

2
n!

, Á

 a0 = 1, a1 = a0 = 1,  a2 =

1 + a1

2
=

1 + 1
2

=
2
2

,

 o

 nan - an - 1 = 0

 o

 3a3 - a2 = 0

 2a2 - a1 = 1

 a1 - a0 = 0

 + snan - an - 1dxn - 1
+

Á .

 y¿ - y = sa1 - a0d + s2a2 - a1dx + s3a3 - a2dx2
+

Á

y¿ = a1 + 2a2 x + 3a3 x2
+

Á
+ nan xn - 1

+
Á

Sabit terimler

x’in katsayıları

x2’nin katsayıları

o

xn–1’in katsayıları

ex – 1 –x’in Taylor serisi

o



Çözüm

(6)

şeklinde bir çözüm olduğunu varsayar ve hangi ak katsayıları için, serinin ve

(7)

türevinin  (5) denklemini sağladığını buluruz. x2y serisi x2 kere (6) denkleminin sağ
tarafıdır:

(8)

(7) ve (8) denklemlerindeki serilerin toplamıdır:

(9)

(8) Denkleminde  xn – 2’nin katsayısının an – 4 olduğuna dikkat edin. y ve ikinci türevi  y�
(5) Denklemini sağlayacaklarsa, (9) Denkleminin sağ tarafındaki x’in kuvvetlerinin katsa-
yılarının her biri sıfır olmalıdır:

(10)

n � 4 için,
n(n – 1) an + an – 4 = 0 (11)

dır. (6) Denkleminden
a0 = y(0)             a1 = y	(0)

olduğunu görebiliriz. Diğer bir deyişle, serinin ilk iki katsayısı y ve y	’nün x = 0’daki
değerleridir. (10)’daki denklemler ve (11)’deki tekrarlama formülü bütün katsayıları a0 ve
a1 cinsinden hesaplamamızı sağlar.

(10)’daki denklemlerden ilk ikisi

a2 = 0,                a3 = 0

verir. (11) Denklemi  an – 4 = 0 ise, an = 0 olacağını gösterir, dolayısıyla

a6 = 0,                 a7 = 0,                 a10 = 0,                 a11 = 0

ve her n = 4k + 2 veya 4k + 3 olduğunda, an = 0 olur. Diğer katsayılar için

buluruz, böylece

ve

olur. 

 a13 =

-a9

12 # 13
=

-a1

4 # 5 # 8 # 9 # 12 # 13
.

 a5 =

-a1

5 # 4
, a9 =

-a5

9 # 8
=

a1

4 # 5 # 8 # 9

 a12 =

-a8

11 # 12
=

-a0

3 # 4 # 7 # 8 # 11 # 12

 a4 =

-a0

4 # 3
, a8 =

-a4

8 # 7
=

a0

3 # 4 # 7 # 8

an =

-an - 4

nsn - 1d

2a2 = 0, 6a3 = 0, 12a4 + a0 = 0, 20a5 + a1 = 0,

 +
Á

+ snsn - 1dan + an - 4dxn - 2
+

Á .

 y– + x2y = 2a2 + 6a3 x + s12a4 + a0dx2
+ s20a5 + a1dx3

y– + x2y

x2y = a0 x2
+ a1 x3

+ a2 x4
+

Á
+ an xn + 2

+
Á .

y– = 2a2 + 3 # 2a3 x +
Á

+ nsn - 1dan xn - 2
+

Á

y = a0 + a1 x + a2 x2
+

Á
+ an xn

+
Á ,
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Yani cevap en iyi olarak iki farklı serinin toplamı biçiminde ifade edilir—biri a0 ile, diğeri
a1 ile çarpılmış olarak.

İki seri de, oran testiyle görüleceği gibi, her x için mutlak yakınsaktır.    

Elemanter Olmayan ‹ntegralleri Hesaplamak

Taylor serileri elemanter olmayan integralleri seriler cinsinden ifade etmekte kullanılabilir.
gibi integraller ışığın kırılması incelemelerinde ortaya çıkarlar. 

ÖRNEK 5 ’i bir kuvvet serisi olarak ifade edin.

Çözüm sin x serisinden

elde ederiz. Dolayısıyla,

olur.

ÖRNEK 6 Bir Belirli ‹ntegrali Bulmak

’i  0.001’den küçük bir hatayla bulun.

Çözüm Örnek 5’teki belirsiz integralden

bulunur. Seri alternedir. Deneyerek

teriminin sayısal olarak 0.001’den küçük olan ilk terim olduğunu buluruz. Bundan önce ge-
len iki terimin toplamı

verir. İki terim daha alırsak, 10–6’dan daha küçük bir hatayla

tahmininde bulunabilirdik. Bundan sadece bir terim daha fazla alarak,1.08 � 10–9 civarın-
da bir hatayla

L

1

0
 sin x2 dx L 0.310268

L

1

0
 sin x2 dx L

1
3

-
1
42

L 0.310.

1
11 # 5!

L 0.00076

L

1

0
 sin x2 dx =

1
3

-
1

7 # 3!
+

1
11 # 5!

-
1

15 # 7!
+

1
19 # 9!

-
Á .

1
1

0  sin x2 dx

L
 sin x2 dx = C +

x3

3
-

x7

7 # 3!
+

x11

11 # 5!
-

x15

15 # 7!
+

x10

19 # 9!
-

Á .

sin x2
= x2

-
x6

3!
+

x10

5!
-

x14

7!
+

x18

9!
-

Á .

1  sin x2 dx

1  sin x2 dx

 + a1 ax -
x5

4 # 5
+

x9

4 # 5 # 8 # 9
-

x13

4 # 5 # 8 # 9 # 12 # 13
+

Áb .

y = a0 a1 -
x4

3 # 4
+

x8

3 # 4 # 7 # 8
-

x12

3 # 4 # 7 # 8 # 11 # 12
+

Áb



buluruz. Yamuk kuralındaki hata formülüyle bu hassaslığı garantilemek 8.000 alt aralık
gerektirirdi.

Arktanjantlar

Bölüm 11.7, Örnek 5’te  tan–1 x serisini, türev alıp,

bularak ve integre edip

elde ederek bulmuştuk. Ancak, bu sonucun dayandığı terim terime integrasyon teoremini
ispatlamadık. Şimdi bu seriyi, yeniden, 

(12)

sonlu formülünün iki tarafını da integre ederek bulacağız. Burada son terim, kalan terim-
leri, ilk terimi ve oranı r = –t2 olan bir geometrik seri olarak toplamak-
tan gelir. (12) Denkleminin iki tarafını da t = 0’dan t = x’e kadar integre etmek

verir. Burada

ile verilmektedir. İntegrandın paydası 1’e eşit veya 1’den daha büyüktür; dolayısıyla

olur. u x u � 1 ise, n → ∞ iken, bu eşitsizliğin sağ tarafı sıfıra yaklaşır. Dolayısıyla, u x u � 1
ise,  olur ve

(13)

buluruz. tan–1 x’in yüksek mertebeden türevlerinin formülleri uygun şekilde düzenlenebilir
olmadıklarından, doğrudan Taylor serisini bulmak yerine bu yolu takip ettik. (13) denkle-
minde  x = 1 alırsak, Leibniz formülünü elde ederiz:

Seri çok yavaş yakınsadığından fazla sayıda ondalık basamak hassasiyeti ile p’ye
yaklaşımlarda kullanılmamaktadır. x’in sıfıra yakın değerlerinde tan–1 x’in serisi çok daha
hızlı yakınsamaktadır. Bu nedenden dolayı, p’yi hesaplamak için tan–1 x’in serisini kul-
lananlar çeşitli trigonometrik özdeşlikler kullanırlar.

p
4

= 1 -
1
3

+
1
5 -

1
7 +

1
9

-
Á

+

s -1dn

2n + 1
+

Á .

tan-1 x = x -
x3

3
+

x5

5 -
x7

7 +
Á , ƒ x ƒ … 1

tan-1 x = a
q

n = 0
 
s -1dnx2n + 1

2n + 1
, ƒ x ƒ … 1.

limn:q Rnsxd = 0

ƒ Rnsxd ƒ …

L

ƒ x ƒ

0
t2n + 2 dt =

ƒ x ƒ
2n + 3

2n + 3
.

Rnsxd =

L

x

0
 
s -1dn + 1t2n + 2

1 + t2  dt .

tan-1 x = x -
x3

3
+

x5

5 -
x7

7 +
Á

+ s -1dn 
x2n + 1

2n + 1
+ Rnsxd ,

a = s -1dn + 1t2n + 2

1
1 + t2 = 1 - t2

+ t4
- t6

+
Á

+ s -1dnt2n
+

s -1dn + 1t2n + 2

1 + t2 ,

tan-1 x = x -
x3

3
+

x5

5 -
x7

7 +
Á .

d
dx

 tan-1 x =
1

1 + x2 = 1 - x2
+ x4

- x6
+

Á

L

1

0
 sin x2 dx L

1
3

-
1
42

+
1

1320
-

1
75600

+
1

6894720
L 0.310268303,
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Örneğin,  

ise

ve 

olur. Şimdi, (13) Denklemi x = 1@2 ile tan–1 (1@2)’yi ve x = 1@3 ile tan–1 (1@3)’ü hesapla-
makta kullanılabilir. Bu sonuçların toplamının 4 ile çarpımı p’yi verir.

Belirsiz Formlar› Hesaplamak

Bazen belirsiz formları, içerilen fonksiyonları Taylor serisi olarak ifade ederek hesaplaya-
biliriz.

ÖRNEK 7 Kuvvet Serisi Kullan›lan Limitler

limitini hesaplayın.

Çözüm ln x’i  (x –1)’in kuvvetleri cinsinden bir Taylor serisi ile temsil ederiz. Bu,  ln x’in
x = 1’de ürettiği Taylor serisini doğrudan hesaplayarak veya Bölüm 11.7, Örnek 6’daki ln x
serisinde x yerine x – 1 yazarak yapılabilir. Her iki yoldan da,

elde ederiz ve buradan

buluruz.

ÖRNEK 8 Kuvvet Serisi Kullan›lan Limitler

limitini hesaplayın.

lim
x:0

 
sin x - tan x

x3 .

lim 
x:1

 
ln x

x - 1
= lim

x:1
 a1 -

1
2

 sx - 1d +
Áb = 1.

ln x = sx - 1d -
1
2

 sx - 1d2
+

Á ,

lim
x:1

 
ln x

x - 1
.

p
4

= a + b = tan-1 
1
2

+ tan-1 
1
3

.

tan sa + b d =

tan a + tan b

1 - tan a tan b
=

1
2 +

1
3

1 -
1
6

= 1 = tan 
p
4

a = tan-1 
1
2
 and b = tan-1 

1
3

,



Çözüm x5’li terime kadar sin x ve tan x’in Taylor serileri

ile verilir. Buradan

ve

bulunur.
limx→0((1@sin x) – (1@x)’i hesaplamak için seri kullanırsak, sadece limiti bulmakla kalmaz,
aynı zamanda csc x için bir yaklaşım formülü keşfederiz.

ÖRNEK 9 csc x ‹çin Yaklafl›m Formülü

limitini hesaplayın.

Çözüm

Dolayısıyla,

olur. Sağdaki bölümden, u x u küçük ise,

olacağını görürüz.

1
sin x

-
1
x L x # 1

3!
=

x
6
 or csc x L

1
x +

x
6

.

lim
x:0

 a 1
sin x

-
1
x b = lim

x:0
 §x 

1
3!

-
x2

5!
+

Á

1 -
x2

3!
+

Á

¥ = 0.

 =

x3 a 1
3!

-
x2

5!
+

Áb
x2 a1 -

x2

3!
+

Áb
= x 

1
3!

-
x2

5!
+

Á

1 -
x2

3!
+

Á

.

 
1

sin x
-

1
x =

x - sin x
x sin x

=

x - ax -
x3

3!
+

x5

5!
-

Áb
x # ax -

x3

3!
+

x5

5!
-

Áb

lim
x:0

 a 1
sin x

-
1
x b .

 = -
1
2

.

 lim
x:0

 
sin x - tan x

x3 = lim
x:0

 a- 1
2

-
x2

8
-

Áb

sin x - tan x = -
x3

2
-

x5

8
-

Á
= x3 a- 1

2
-

x2

8
-

Áb

sin x = x -
x3

3!
+

x5

5!
-

Á, tan x = x +
x3

3
+

2x5

15
+

Á .

830 Bölüm 11: Sonsuz Diziler ve Seriler

veya



11.10 Kuvvet Serilerinin Uygulamalar› 831

ALIfiTIRMALAR 11.10

Binom Serileri
1–10 alıştırmalarındaki fonksiyonların Binom serilerinin ilk dört teri-
mini bulun.

1. 2. 3.

4. 5. 6. a1 -

x
2
b-2a1 +

x
2
b-2

s1 - 2xd1>2
s1 - xd-1>2s1 + xd1>3s1 + xd1>2

7. 8.

9. 10.

11–14 alıştırmalarındaki fonksiyonların Binom serilerini bulun.

11. 12. s1 + x2d3s1 + xd4

a1 -

2
x b

1>3a1 +

1
x b

1>2
s1 + x2d-1>3s1 + x3d-1>2

TABLO 11.1 S›k Kullan›lan Taylor Serileri

Binom Serileri

Burada

k � 3  için  

ile verilir.

Not: Binom serilerini kapalı olarak yazmak için,  verecek şekilde, ’ı 1 olarak tanımlamak ve 

x0 = 1  almak (genellikle dışlanan x = 0 durumunda bile) alışkanlık haline gelmiştir. m pozitif bir tamsayıysa, seri xm’de kesilir
ve sonuç her x için yakınsak olur.

am
0
bs1 + xdm

= gq

k=0 am
k
bxk .

am
1
b = m, am

2
b =

msm - 1d
2!

, am
k
b =

msm - 1d Á sm - k + 1d
k!

 for k Ú 3.

 = 1 + a
q

k = 1
 am

k
bxk, ƒ x ƒ 6 1,

 s1 + xdm
= 1 + mx +

msm - 1dx2

2!
+

msm - 1dsm - 2dx3

3!
+

Á
+

msm - 1dsm - 2d Á sm - k + 1dxk

k!
+

Á

tan-1 x = x -
x3

3
+

x5

5 -
Á

+ s -1dn 
x2n + 1

2n + 1
+

Á
= a

q

n = 0
 
s -1dnx2n + 1

2n + 1
, ƒ x ƒ … 1

ln 
1 + x
1 - x

= 2 tanh-1 x = 2 ax +
x3

3
+

x5

5 +
Á

+
x2n + 1

2n + 1
+

Áb = 2a
q

n = 0
 

x2n + 1

2n + 1
, ƒ x ƒ 6 1

ln s1 + xd = x -
x2

2
+

x3

3
-

Á
+ s -1dn - 1 

xn

n +
Á

= a
q

n = 1
 
s -1dn - 1xn

n , -1 6 x … 1

cos x = 1 -
x2

2!
+

x4

4!
-

Á
+ s -1dn 

x2n

s2nd!
+

Á
= a

q

n = 0
 
s -1dnx2n

s2nd!
, ƒ x ƒ 6 q

sin x = x -
x3

3!
+

x5

5!
-

Á
+ s -1dn 

x2n + 1

s2n + 1d!
+

Á
= a

q

n = 0
 
s -1dnx2n + 1

s2n + 1d!
, ƒ x ƒ 6 q

ex
= 1 + x +

x2

2!
+

Á
+

xn

n!
+

Á
= a

q

n = 0
 
xn

n!
, ƒ x ƒ 6 q

1
1 + x

= 1 - x + x2
-

Á
+ s -xdn

+
Á

= a
q

n = 0
s -1dnxn, ƒ x ƒ 6 1

1
1 - x

= 1 + x + x2
+

Á
+ xn

+
Á

= a
q

n = 0
xn, ƒ x ƒ 6 1



13. 14.

Bafllang›ç De¤er Problemleri
15–32 alıştırmalarındaki başlangıç değer problemlerinin seri çözüm-
lerini bulun.

15. 16.

17. 18.

19. 20.

21. 22.

23.

24.

25. ve 

26. ve 

27. ve 

28. ve 

29. ve 

30. ve 

31. ve 

32. ve 

Yaklafl›mlar ve Elemanter Olmayan ‹ntegraller
33–36 alıştırmalarında, integralin değerini büyüklüğü 10–3’ten küçük
bir hatayla bulmak için seri kullanın. (Yanıt bölümü integrallerin
değerlerini 5 ondalık basamağa yuvarlanmış olarak verir.)

33. 34.

35. 36.

37–40 alıştırmalarında, integralin değerini büyüklüğü 10–8’den küçük
bir hatayla bulmak için seri kullanın. (Yanıt bölümü integrallerin
değerlerini 10 ondalık basamağa yuvarlanmış olarak verir.)

37. 38.

39. 40.

41. integralinde cos t2’ye  yaklaşımı kulla-

nılırsa, hatayı tahmin edin. 

42. integralinde ’ye 

yaklaşımı kullanılırsa, hatayı tahmin edin.

43–46 alıştırmalarında, verilen aralıkta büyüklüğü 10–3’ten küçük bir
hatayla  F(x)’e yaklaşımda bulunan bir polinom bulun.

43. Fsxd =

L

x

0
 sin t2 dt, [0, 1]

1 -

t
2

+

t2

4!
-

t3

6!
cos 2t1

1
0  cos 2t dt .

1 -

t4

2
+

t8

4!1
1

0  cos t2 dt .

L

1

0
 
1 - cos x

x2  dx
L

0.1

0
21 + x4 dx

L

0.1

0
e-x2

 dx
L

0.1

0
 
sin x

x  dx

L

0.25

0
23 1 + x2 dx

L

0.1

0
 

1

21 + x4
 dx

L

0.2

0
 
e-x

- 1
x  dx

L

0.2

0
 sin x2 dx

y s0d = 0y– - 2y¿ + y = 0, y¿s0d = 1

y s0d = ay– + x2y = x, y¿s0d = b

y s0d = ay– - x2y = 0, y¿s0d = b

y s2d = 0y– - y = -x, y¿s2d = -2

y s0d = -1y– - y = x, y¿s0d = 2

y s0d = 2y– + y = x, y¿s0d = 1

y s0d = 1y– + y = 0, y¿s0d = 0

y s0d = 0y– - y = 0, y¿s0d = 1

s1 + x2dy¿ + 2xy = 0, y s0d = 3

s1 - xdy¿ - y = 0, y s0d = 2

y¿ - x2y = 0, y s0d = 1y¿ - xy = 0, y s0d = 1

y¿ + y = 2x, y s0d = -1y¿ - y = x, y s0d = 0

y¿ + y = 1, y s0d = 2y¿ - y = 1, y s0d = 0

y¿ - 2y = 0, y s0d = 1y¿ + y = 0, y s0d = 1

a1 -

x
2
b4

s1 - 2xd3 44.

45. (a) [0, 0.5] (b) [0, 1]

46. (a) [0, 0.5] (b) [0, 1]

Belirsiz Formlar
47–56 alıştırmalarındaki limitleri serilerle hesaplayın.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

Teori ve Örnekler
57. ln (1 + x)’in Taylor serisinde x yerine –x yazarak ln(1 – x) serisini

bulun. Sonra bunu ln (1 + x)’in Taylor serisinden çıkararak,
uxu � 1 için,

olduğunu gösterin.

58. ln (1.1)’i büyüklüğü 10–8’den küçük bir hatayla bulmak için ln
(1 + x)’in Taylor serisinde kaç terim almalısınız? Yanıtınızı açıkla-
yın.

59. Alterne Seriler Tahmin Teoremine göre, p@4’ü büyüklüğü
10–3’ten küçük bir hatayla bulduğunuzdan emin olmak için
tan–1 1’in Taylor serisinin kaç terimini almanız gerekir? Yanıtınızı
açıklayın.

60. ƒ(x) = tan–1 x’in Taylor serisinin uxu � 1 için ıraksadığını gösterin.

61. Pi’yi hesaplamak  

denkleminin sağ tarafındaki her terimi büyüklüğü 10–6’dan küçük
bir hatayla hesaplamak için tan–1 x’in Taylor serisinin kaç terimini
almanız gerekir? Bunun tersine, p2/6’ya o kadar
yavaş yakınsar ki, 50 terim bile iki ondalık basmak hassaslık ver-
mez.

62. tan t ’nin Taylor serisinin sıfırdan farklı ilk üç terimini 0’dan x’e
kadar integre ederek, ln sec x’in Taylor serisinin ilk üç terimini
elde edin.

gq

n=1s1>n2d

p = 48 tan-1 
1
18

+ 32 tan-1 
1
57

- 20 tan-1 
1

239

ln 
1 + x
1 - x

= 2 ax +

x3

3
+

x5

5
+

Á b .

lim
x:2

 
x2

- 4
ln sx - 1d

lim
x:0

 
ln s1 + x2d
1 - cos x

lim
x: q

 sx + 1d sin 
1

x + 1
lim

x: q 
x2se-1>x2

- 1d

lim
y:0

 
tan-1 y - sin y

y3 cos y
lim
y:0

 
y - tan-1 y

y3

lim
u:0

 
sin u - u + su3>6d

u5lim
t:0

 
1 - cos t - st2>2d

t4

lim
x:0

 
ex

- e-x

xlim
x:0

 
ex

- s1 + xd
x2

Fsxd =

L

x

0
 
ln s1 + td

t  dt,

Fsxd =

L

x

0
 tan-1 t dt,

Fsxd =

L

x

0
t2e-t2

 dt, [0, 1]
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63. a. sin–1 x’in Taylor serisinin sıfırdan farklı ilk dört terimini üret-
mek için Binom serisi ve

eşitliğini kullanın. Yakınsaklık yarıçapı nedir?

b. için bir seri (a) şıkkındaki sonucu kullanarak
cos–1 x’in Taylor serisinin sıfırdan farklı ilk beş terimini bulun.

64. a. için bir seri

fonksiyonunun Taylor serisinin sıfırdan farklı ilk dört terimini bu-
lun.

b. (a) şıkkındaki serinin ilk üç terimini kullanarak sinh–1 0.25’i
hesaplayın. Hesaplama hatasının büyüklüğünün bir üst sınırını
bulun.

65. –1@(1 + x) serisinden 1@(1 + x)2’in Taylor serisini elde edin.

66. 2x@(1 + x2)2 için bir seri bulmak üzere 1@(1 + x)2’nin Taylor
serisini kullanın.

67. P’yi hesaplamak İngiliz  matematikçi Wallis 

formülünü keşfetti. Bu formülle p’yi 2 ondalık basamak hassas-
lıkla bulun.

68. Alıştırma 57’deki formülü kullanarak n = 1, 2, 3, …, 10 için bir
doğal logaritma, ln n, tablosu oluşturun fakat, ln 4 = 2 ln 2, ln 6 =
ln 2 + ln 3, ln 8 = 3 ln 2, ln 9 = 2 ln 3 ve ln 10 = ln 2 + ln 5
bağıntılarından yararlanarak işi çok az logaritmanın serisini
hesaplamaya indirgeyin. Alıştırma 57’de aşağıdaki değerleri yeri-
ne koyarak işe başlayın:

1
3

,
1
5

,
1
9

,
1
13

.

p

4
=

2 # 4 # 4 # 6 # 6 # 8 # Á

3 # 3 # 5 # 5 # 7 # 7 # Á
.

sinh-1 x =

L

x

0
 

dt

21 + t2
.

sinh-1 x

cos-1 x

d
dx

 sin-1 x = s1 - x2d-1>2

69. sin–1 x için bir seri (1 – x2)–1@2’nin binom serisini integre ederek,
uxu � 1 için aşağıdaki eşitliği gösterin.

70. uuxuu � 1 için  tan–1 x serisi.

serilerini 

serisini birinci durumda x’ten ∞’a, ikincisindeyse –∞’dan x’e
kadar integre ederek bulun.

71. ’nın değeri 

a. İki açının farkının tanjantını kullanarak

olduğunu gösterin.

b.

olduğunu gösterin.

c. değerini bulun.gq

n=1 tan-1 
2
n2 .

a
N

n = 1
 tan-1 

2
n2 = tan-1 sN + 1d + tan-1 N -

p

4
.

tan stan-1 sn + 1d - tan-1 sn - 1dd =

2
n2

gq

n=1 tan-1s2>n2d

1
1 + t2 =

1
t2 #  

1
1 + s1>t2d

=

1
t2 -

1
t4 +

1
t6 -

1
t8 +

Á

 tan-1 x = -

p

2
-

1
x +

1
3x3 -

1
5x5 +

Á, x 6 -1,

 tan-1 x =

p

2
-

1
x +

1
3x3 -

1
5x5 +

Á, x 7 1

sin-1 x = x + a
q

n = 1
 
1 # 3 # 5 # Á # s2n - 1d

2 # 4 # 6 # Á # s2nd
 

x2n + 1

2n + 1
.

T

T

T

Fourier Serileri

Taylor serilerinin bir ƒ fonksiyonuna polinomlarla yaklaşmak için nasıl kullanılabileceğini
gördük. Taylor polinomları özel bir x = a noktası yakınlarında ƒ fonksiyonuna uyan bir el-
bise verir, fakat uzak noktalarda yaklaşımdaki hata büyük olabilir. Geniş aralıklar üzerinde
çoğu kez iyi yaklaşımlar veren ve Taylor polinomlarının işe yaramadığı süreksiz fonksi-
yonlarda çoğu kez işe yarayan başka bir yöntem vardır. Joseph Fourier tarafından tanıtılan
bu yöntem sinüs ve kosinüs fonksiyonları toplamları ile fonksiyonlara yaklaşır.  Yöntem,
radyo sinyalleri ve alternatif akım gibi periyodik fonksiyonları incelemek, ısı iletimi prob-
lemlerini çözmek ve bilimde ve mühendislikteki birçok başka problemi çözmek için çok
elverişlidir.

11.11

TARİHSEL BİYOGRAFİ

Jean-Baptiste Joseph Fourier

(1766–1830)



Bir ƒ fonksiyonuna aralığı üzerinde sinüs ve kosinüs fonksiyonlarının bir
toplamı ile yaklaşmak istediğimizi varsayın,

veya toplam notasyonu ile

(1)

a0, a1, a2,… , an ve b1, b2,… , bn sabitleri için,  ƒn(x)’i  ƒ(x)’e  ‘‘muhtemel en iyi’’ yaklaşım
yapacak, değerler  seçmek isteyebiliriz. ‘‘Muhtemel en iyi’’ kavramı aşağıdaki şekilde
tanımlanır:

1. ƒn(x) ve ƒ(x), 0’dan  2p’ye integre edildiklerinde aynı değeri verirler. 

2. ƒn(x) cos kx ve ƒ(x) cos kx,  (k = 1,… , n)  0’dan  2p’ye integre edildiklerinde aynı
değeri verirler.

3. ƒn(x) sin kx ve ƒ(x) sin kx,  (k = 1,… , n)  0’dan 2p’ye integre edildiklerinde aynı
değeri verirler. 

ƒn üzerine toplam 2n + 1  koşul koyuyoruz: 

Aşağıdaki şekilde devam ederek a0, a1, a2,… , an ve b1, b2,… , bn katsayıları bütün bu
koşullar sağlanacak şekilde seçilebilir. cos kx ve sin kx’in [0, 2p]  üzerindeki integralleri
k � 1 için sıfır olduğundan (1) Denkleminin iki tarafını  0’dan  2p’ye integre etmek 

verir. Sadece a0 sabit terimi ƒn’nin [0, 2p] üzerindeki integraline katkıda bulunur. Benzer
bir hesaplama bütün diğer terimler için uygulanır. (1) Denkleminin iki tarafını cos x ile
çarpar ve  0’dan  2p’ye integre edersek 

elde ederiz. Bu, 

ile birlikte p, q ve m tamsayılar ve  p 
 q iken 

L

2p

0
 cos px cos qx dx =

L

2p

0
 cos px sin mx dx =

L

2p

0
 sin px sin qx dx = 0

L

2p

0
 cos px cos px dx = p

L

2p

0
ƒnsxd cos x dx = pa1 .

L

2p

0
ƒnsxd dx = 2pa0

 
L

2p

0
ƒnsxd sin kx dx =

L

2p

0
ƒsxd sin kx dx, k = 1, Á , n .

 
L

2p

0
ƒnsxd cos kx dx =

L

2p

0
ƒsxd cos kx dx, k = 1, Á , n ,

 
L

2p

0
ƒnsxd dx =

L

2p

0
ƒsxd dx ,

ƒnsxd = a0 + a
n

k = 1
sak cos kx + bk sin kxd .

 + san cos nx + bn sin nxd

ƒnsxd = a0 + sa1 cos x + b1 sin xd + sa2 cos 2x + b2 sin 2xd +
Á

[0, 2p]
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olmasından elde edilir (9–13 alıştırmaları).  (1) Denkleminin iki tarafını sin x ile çarpar ve
0’dan 2p’ye integre edersek 

elde ederiz. 

ile benzer tarzda devam ederek  her defasında sıfırdan farklı sadece bir terim,  sinüs kare
ile veya kosinüs kare ile bir terim, elde ederiz. Özet olarak,

ƒn yerine ƒ yazıldığında soldaki integraller aynı kalacak şekilde ƒn’yi seçeriz. Dolayısıyla
bu eşitlikleri, ƒ’den a0, a1, a2,… , an ve b1, b2,… , bn katsayılarını bulmak için kullanabili-
riz:

(2)

(3)

(4)

Bu katsayıları bulmak için gerekli tek koşul yukarıdaki integrallerin var olmasıdır. n’yi
sonsuza götürür (n → )  ve bu kuralları bir sonsuz serinin katsayılarını elde etmek için
kullanırsak sonuçta elde edilen toplama ƒ(x)’in Fourier serisi denir  

(5)

ÖRNEK 1 Bir Fourier Serisi Aç›l›m› Bulmak 

Fourier serileri,  Taylor serileri ile temsil edilemeyen bazı serileri temsil etmek için kul-
lanılabilir. Örneğin Şekil 11.16a’da gösterilen ƒ adım fonksiyonu 

ƒsxd = e1, if 0 … x … p

2, if p 6 x … 2p .

a0 + a
q

k = 1
sak cos kx + bk sin kxd .

q

bk =
1
pL

2p

0
ƒsxd sin kx dx, k = 1, Á , n

ak =
1
pL

2p

0
ƒsxd cos kx dx, k = 1, Á , n

a0 =
1

2pL

2p

0
ƒsxd dx

 
L

2p

0
ƒnsxd sin kx dx = pbk, k = 1, Á , n

 
L

2p

0
ƒnsxd cos kx dx = pak, k = 1, Á , n

 
L

2p

0
ƒnsxd dx = 2pa0

cos 2x, sin 2x, Á , cos nx, sin nx

L

2p

0
ƒnsxd sin x dx = pb1 .

1,    0 � x � p ise

2,    p � x � 2p ise



ƒ’nin Fourier serisinin katsayıları (2), (3) ve (4) Denklemleri kullanılarak hesaplanır. 

Dolayısıyla, 

a0 =
3
2

, a1 = a2 =
Á

= 0,

 =
cos kp - 1

kp
=

s -1dk
- 1

kp
.

 =
1
p a c- cos kx

k
d

0

p

+ c- 2 cos kx
k

d
p

2pb

 =
1
p a
L

p

0
 sin kx dx +

L

2p

p

2 sin kx dxb

 bk =
1
pL

2p

0
ƒsxd sin kx dx

 =
1
p a csin kx

k
d

0

p

+ c2 sin kx
k
d
p

2pb = 0, k Ú 1

 =
1
p a
L

p

0
 cos kx dx +

L

2p

p

2 cos kx dxb

 ak =
1
pL

2p

0
ƒsxd cos kx dx

 =
1

2p
 a
L

p

0
1 dx +

L

2p

p

2 dxb =
3
2

 a0 =
1

2pL

2p

0
ƒsxd dx
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y

0 p 2p

1

2

(a)

x

y

0 p–p–2p 2p 3p 4p

1

2

(b)

fiEK‹L 11.16 (a) 

adım fonksiyonu 
(b)  ƒ’nin Fourier serisinin grafiği periyodiktir ve her süreksizlik noktasındaki değeri 3@2 dir (Örnek
1). 

ƒsxd = e1, 0 … x … p

2, p 6 x … 2p
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ve

bulunur. Fourier serisi

dir. Şuna dikkat edin; ƒ(x) fonksiyonunun 1’den 2’ye sıçradığı x = p’de bütün sinüs terim-
leri ortadan kalkar ve serinin değeri olarak 3@2 kalır. Bu, ƒ(p) = 1 olduğundan ƒ’nin  p’de-
ki değeri değildir. Fourier serisi ayrıca  x = 0’da  ve x = 2p’de de 3@2 değerini alır. Aslında,
Fourier serisindeki bütün terimler periyodiktir, 2p periyotlu, ve serinin x + 2p’deki değeri
x’teki değeri ile aynıdır. Elde etmiş olduğumuz seri, tanım kümesi bütün reel sayılar olan
ve 2p uzunluğundaki her aralıkta tekrarlanan bir kalıpla  Şekil 11.16b’de grafiği çizilen
periyodik fonksiyonu temsil etmektedir. Fonksiyon, x = np, n = 0, �1, �2,…  de sıçrama
yapar ve bu noktalardaki değeri, her iki taraftan tek taraflı limitlerin ortalama değeri olan
3@2dir. ƒ fonksiyonunun Fourier serisinin yakınsaklığı Şekil 11.17’de gösterilmiştir. 

3
2

-
2
p asin x +

sin 3x
3

+
sin 5x

5 +
Áb .

b1 = -
2
p, b2 = 0, b3 = -

2
3p

, b4 = 0, b5 = -
2

5p, b6 = 0, Á

1

0

1.5

2

x

y

2pp

f

f1

f

f3

f

f5

(a)

0 2pp

(b)

1

1.5

2

x

y

0 2pp

(c)

x

y

1

1.5

2

f

f9

0
x

y

2pp

(d)

1

1.5

2 f

f15

0
x

y

2pp

(e)

1

1.5

2

fiEK‹L  11.17 Örnek 1’deki fonksiyonunun ƒ1, ƒ3, ƒ5, ƒ9 ve ƒ15 Fourier yaklaşım fonksiyonları.ƒsxd = e1, 0 … x … p

2, p 6 x … 2p

ise

ise



Fourier Serilerinin Yak›nsakl›¤› 

Taylor serileri bir fonksiyon ve türevlerinin tek bir x = a noktasındaki değerlerinden he-
saplanır ve Örnek 1’deki ƒ gibi  süreksiz fonksiyonların davranışlarını yansıtamazlar. Bir
Fourier serisinin böyle fonksiyonları temsil etmekte kullanılabilmesinin nedeni,  bir fonk-
siyonun Fourier serisinin bazı integrallerin varlığına dayanmasıdır. Oysa Taylor serisi bir
fonksiyonun tek bir nokta civarındaki türevlerine  dayanmaktadır. Bir fonksiyon süreksiz
olsa bile integrali var olabilir. 

Fourier serilerini oluşturmak için kullanılan katsayılar tam olarak, ƒ’ye ƒn ile
yaklaşımdaki hatanın karesinin integralini minimize edecek şekilde seçilmesi gereken-
lerdir. Yani, a0, a1, a2,… , an ve b1, b2,… , bn katsayılarını söylediğimiz gibi seçmekle  

integrali minimize edilir. Taylor serileri bir nokta civarında bir fonksiyona ve türevlerine
yaklaşmak için kullanışlı iken, Fourier serileri bir aralık üzerine dağılmış bir hatayı mini-
mize ederler.

Fourier serilerinin yakınsaklığı ile ilgili bir sonucu ispatsız ifade ediyoruz. Bir
fonksiyonun bir I aralığı üzerinde sonlu sayıda süreksizlik noktası varsa ve bu noktalarda
her iki taraftan tek-yanlı limitler mevcut ise fonksiyon  I aralığı üzerinde parçalı sürekli
dir. (Bölüm 5, Ek–Alıştırmalar 11–18’e bakın. ) 

L

2p

0
[ƒsxd - ƒnsxd]2 dx
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TEOREM 24 ƒ(x),   aralığında  ƒ ve ƒ	’nün parçalı sürekli olduğu bir  fonksiyon
olsun. Bu durumda ƒ,  sürekli olduğu bütün noktalarda kendi Fourier serisine
eşittir.  ƒ’nin süreksiz olduğu bir   noktasında  Fourier serisi

değerine yakınsar. Burada ƒ(c+) ve ƒ(c–) değerleri  c’deki tek yanlı limitlerdir.

ƒsc + d + ƒsc-d
2

ALIfiTIRMALAR 11.11

Fourier Serileri Bulmak 
1–8 alıştırmalarında, verilen fonksiyonun Fourier serisini bulun. Her
bir  fonksiyonu çizin.

1.

2.

3.

4.

5. ƒsxd = ex 0 … x … 2p .

ƒsxd = e x2, 0 … x … p

0, p 6 x … 2p

ƒsxd = e x, 0 … x … p

x - 2p, p 6 x … 2p

ƒsxd = e1, 0 … x … p

-1, p 6 x … 2p

ƒsxd = 1 0 … x … 2p .

6.

7.

8.

Teori and Örnekler
9–13 alıştırmalarındaki sonuçları gerçekleyin.  p ve  q pozitif tam-
sayılardır. 

9.
L

2p

0
 cos px dx = 0 for all p .

ƒsxd = e2, 0 … x … p

-x, p 6 x … 2p

ƒsxd = e cos x, 0 … x … p

0, p 6 x … 2p

ƒsxd = e ex, 0 … x … p

0, p 6 x … 2p

her p için
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10.

11.

(İpucu: cos A cos B = (1@2) [cos (A + B) + cos (A – B)].)

12.

(İpucu: sin A sin B = (1@2) [cos (A – B) – cos (A + B)].)

13.

(İpucu: sin A cos B = (1@2) [sin (A + B) + sin (A – B)].)
L

2p

0
 sin px cos qx dx = 0 for all p and q .

L

2p

0
 sin px sin qx dx = e0, if p Z q

p, if p = q
.

L

2p

0
 cos px cos qx dx = e0, if p Z q

p, if p = q
.

L

2p

0
 sin px dx = 0 for all p .

14. Fonksiyonların toplamlarının Fourier Serileri ƒ ve g Teorem
24’ün koşullarını sağlayan iki fonksiyon ise ƒ + g’nin
[0, 2p]’deki Fourier serisi ƒ’nin Fourier serisi ile g’nin Fourier
serisinin toplamı mıdır? Cevabınızı açıklayın.

15. Terim-terime türetme

a. Örnek  3’teki  ƒ(x)’in Fourier serisinin 0 � x � 2p iken  ƒ(x)’e
yakınsadığını göstermek için Teorem 24’ü kullanın. 

b. ƒ	(x) = 1 olmasına rağmen, (a)’daki Fourier serisinin terim-
terime türetilmesi ile elde edilen serinin ıraksak olduğunu
gösterin.

16. Örnek 4’te tanımlanan Fourier serisinin Değerini bulmak için Te-

orem 24’ü kullanın ve olduğunu gösterin.
p

6

2

= a
q

n = 1
 
1
n2 .

Bölüm 11 Bölüm Tekrar Sorular› 

1. Sonsuz bir dizi nedir? Böyle bir dizinin yakınsaması veya ıraksa-
ması ne anlama gelir? Örnekler verin.

2. Azalmayan bir dizi nedir? Hangi koşullar altında böyle bir dizinin
limiti vardır? Örnekler verin.

3. Dizilerin limitlerini hesaplamak için hangi teoremler vardır? Ör-
nekler verin.

4. Hangi teorem bazen bir dizinin limitini hesaplamak için l’Hôpital
kuralını kullanmamızı sağlar? Bir örnek verin.

5. Diziler ve serilerle çalışırken, hangi altı dizi limiti karşımıza çıka-
bilir?

6. Sonsuz bir seri nedir? Böyle bir serinin yakınsaması veya ıraksa-
ması ne anlama gelir? Örnekler verin.

7. Bir geometrik seri nedir? Böyle bir seri ne zaman yakınsar veya
ıraksar? Yakınsadığında, toplamı nedir? Örnekler verin.

8. Geometrik serilerin dışında, hangi yakınsak ve ıraksak serileri bi-
liyorsunuz?

9. Iraksaklık için n. Terim Testi nedir? Testin altında hangi fikir ya-
tar?

10. Yakınsak serilerin terim-terime toplamları ve farkları ile ıraksak
ve yakınsak serilerin bir sabitle çarpımı hakkında ne söylenebilir? 

11. Bir yakınsak seriye sonlu sayıda terim eklerseniz ne olur? Peki ya
ıraksak bir seriye? Yakınsak veya ıraksak bir seriden sonlu sayıda
terim çıkarırsanız ne olur?

12. Bir seriyi nasıl yeniden indislersiniz? Bunu neden yapmak isteye-
siniz?

13. Hangi koşullar altında terimleri negatif olmayan sonsuz bir seri
yakınsar veya ıraksar? Neden terimleri negatif olmayan serilerle
çalışıyoruz?

14. İntegral Testi nedir? Arkasındaki neden nedir? Kullanımına bir
örnek verin.

15. p-serileri ne zaman yakınsar veya ıraksar? Nereden biliyorsunuz?
Yakınsak ve ıraksak p-serilerine örnekler verin.

16. Doğrudan Karşılaştırma Testi ve Limit Karşılaştırma Testi nedir?
Bu testlerin altında yatan neden nedir? Kullanımlarına örnekler
verin.

17. Oran ve Kök Testleri nedir? Her zaman yakınsaklığı veya ıraksak-
lığı belirleyecek bilgiyi verirler mi? Örnekler verin.

18. Alterne seri nedir? Böyle bir serinin yakınsaklığını belirlemek
için hangi teorem vardır?

19. Bir alterne serinin toplamını bulurken yapılan hatayı serinin kısmi
toplamlarından biriyle nasıl belirlersiniz? Belirlemenin  altında
yatan neden nedir?

20. Mutlak yakınsaklık ve koşullu yakınsaklık nedir? İkisi arasındaki
ilişki nedir?

21. Mutlak yakınsak veya koşullu yakınsak bir serinin terimlerini ye-
niden düzenleme hakkında ne biliyorsunuz? Örnek verin.

22. Bir kuvvet serisi nedir? Bir kuvvet serisinin yakınsaklığını nasıl
test edersiniz? Olası sonuçlar nedir?

23. Aşağıdakiler hakkındaki temel bilgiler nedir?

a. Kuvvet serilerinin terim-terime türevinin alınması?

b. Kuvvet serilerinin terim-terim integrasyonu?

c. Kuvvet serilerinin çarpımı?

örnekler verin.

24. Bir ƒ(x) fonksiyonunun x = a’da ürettiği Taylor serisi nedir? Seri-
yi inşa etmek için ƒ hakkında ne bilmeniz gerekir? Bir örnek ve-
rin. 

25. Maclaurin serisi nedir?

26. Bir Taylor serisi her zaman üretildiği fonksiyona yakınsar mı?
Açıklayın.

27. Taylor polinomları nedir? Yararları nedir?

p 
 q ise

p 
 q ise

her p ve q için

her p için
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28. Taylor formülü nedir? Fonksiyonlara yaklaşım yapmak için Tay-
lor polinomlarını kullanmaktan gelen hata hakkında ne söyler?
Özel olarak, Taylor formülü bir lineerizasyon ve bir kuadratik
yaklaşımdaki hata için ne söyler?

29. Binom serisi nedir? Hangi aralıkta yakınsar? Nasıl kullanılır?

30. Bazen kuvvet serilerini başlangıç değer problemlerini çözmek
için nasıl kullanırsınız?

31. Bazen, elemanter olmayan integrallerin değerlerini tahmin etmek
için kuvvet serilerini nasıl kullanırsınız?

32. 1@(1 – x),  1@(1 + x), ex, sin x, cos x, ln (1 + x), ln [(1 + x)@(1 – x)]
ve tan–1 x’in Taylor serileri nedir? Bu seriler yerine kısmi toplam-
larını yazmanın getireceği hatayı nasıl tahmin edersiniz?

33. Fourier serisi nedir? [0, 2p] aralığında tanımlı bir ƒ(x) fonksiyonu
için   a0, a1, a2, … ve b1, b2, … Fourier katsayılarını nasıl
hesaplarsınız?

34. ƒ ve ƒ	 [0, 2p] üzerinde parçalı sürekli iken ƒ(x)’in Fourier
serisinin yakınsaklığı hakkındaki teoremi ifade edin.

Bölüm 11 Problemler 

Yak›nsak veya Iraksak Diziler
1–18 problemlerinde n.inci terimleri görülen dizilerin hangileri
yakınsar, hangileri ıraksar? Yakınsak her dizinin limitini bulun.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

Yak›nsak Seriler
19–24 problemlerindeki serilerin toplamlarını bulun.

19. 20.

21. 22.

23. 24. a
q

n = 1
s -1dn 

3
4na

q

n = 0
e-n

a
q

n = 3
 

-8
s4n - 3ds4n + 1da

q

n = 1
 

9
s3n - 1ds3n + 2d

a
q

n = 2
 

-2
nsn + 1da

q

n = 3
 

1
s2n - 3ds2n - 1d

an =

s -4dn

n!
an =

sn + 1d!
n!

an = 2n 2n + 1an = ns21>n
- 1d

an = a3n b
1>n

an = An
3n

n

an = a1 +

1
n b

-n

an = an - 5
n bn

an =

ln s2n3
+ 1d

nan =

n + ln n
n

an =

ln s2n + 1d
nan =

ln sn2d
n

an = sin npan = sin 
np
2

an = 1 + s0.9dnan =

1 - 2n

2n

an =

1 - s -1dn

2n
an = 1 +

s -1dn

n

Yak›nsak veya Iraksak Seriler
25–40 problemlerindeki serilerin hangileri mutlak yakınsak, hangileri
koşullu yakınsak ve hangileri ıraksaktır? Yanıtlarınızı açıklayın.

25. 26. 27.

28. 29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

Kuvvet Serileri
41–50 problemlerinde, (a) serinin yakınsaklık yarıçapı ve aralığını bu-
lun. Sonra serinin (b) mutlak yakınsak ve (c) koşullu yakınsak olduğu
x değerlerini belirleyin. 

41. 42.

43. 44.

45. 46. a
q

n = 1
 

xn

2n
a
q

n = 1
 
xn

nn

a
q

n = 0
 
sn + 1ds2x + 1dn

s2n + 1d2na
q

n = 1
 
s -1dn - 1s3x - 1dn

n2

a
q

n = 1
 
sx - 1d2n - 2

s2n - 1d!a
q

n = 1
 
sx + 4dn

n3n

a
q

n = 2
 

1

n2n2
- 1

a
q

n = 1
 

1

2nsn + 1dsn + 2d

a
q

n = 1
 
2n 3n

nna
q

n = 1
 
s -3dn

n!

a
q

n = 1
 
s -1dnsn2

+ 1d
2n2

+ n - 1a
q

n = 1
 
n + 1

n!

a
q

n = 1
 
s -1dn 3n2

n3
+ 1a

q

n = 1
 

s -1dn

n2n2
+ 1

a
q

n = 3
 

ln n
ln sln nda

q

n = 1
 
ln n

n3

a
q

n = 2
 

1
n sln nd2a

q

n = 1
 

s -1dn

ln sn + 1da
q

n = 1
 

1
2n3

a
q

n = 1
 
s -1dn

2n
a
q

n = 1
 
-5
na

q

n = 1
 

1

2n
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47. 48.

49. 50.

Maclaurin Serisi 
51–56 problemlerindeki serilerin her biri bir ƒ(x) fonksiyonunun x = 0
noktasındaki Taylor serisinin belirli bir noktadaki değeridir. Hangi
fonksiyon ve hangi nokta? Serinin toplamı nedir?

51.

52.

53.

54.

55.

56.

57–64 problemlerindeki fonksiyonların  x = 0’daki Taylor serilerini
bulun.

57. 58.

59. 60.

61. 62.

63. 64.

Taylor Serileri
65–68 problemlerinde, ƒ’nin x = a’da ürettiği Taylor serisinin sıfır-
dan farklı ilk dört terimini bulun.

65.

66.

67.

68.

Bafllang›ç De¤er Problemleri
69–76 Problemlerindeki başlangıç değer problemlerini çözmek için
kuvvet serileri kullanın.

69. 70.

71. 72.

73. 74.

75. 76. y¿ - y = -x, ys0d = 2y¿ - y = x, ys0d = 1

y¿ + y = x, ys0d = 0y¿ - y = 3x, ys0d = -1

y¿ + y = 1, ys0d = 0y¿ + 2y = 0, ys0d = 3

y¿ - y = 0, ys0d = -3y¿ + y = 0, ys0d = -1

ƒsxd = 1>x at x = a 7 0

ƒsxd = 1>sx + 1d at x = 3

ƒsxd = 1>s1 - xd at x = 2

ƒsxd = 23 + x2 at x = -1

e-x2

e spx>2d

cos 25xcos sx5>2d

sin 
2x
3

sin px

1
1 + x3

1
1 - 2x

 + s -1dn - 1 
1

s2n - 1d A23 B2n - 1
+

Á

1

23
-

1

923
+

1

4523
-

Á

1 + ln 2 +

sln 2d2

2!
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Á
+

sln 2dn

n!
+

Á

1 -

p2

9 # 2!
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p4

81 # 4!
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Á
+ s -1dn 

p2n

32ns2nd!
+

Á

p -

p3

3!
+

p5

5!
-

Á
+ s -1dn 

p2n + 1

s2n + 1d!
+

Á

2
3

-

4
18

+

8
81

-
Á

+ s -1dn - 1 
2n

n3n +
Á

1 -

1
4

+

1
16

-
Á

+ s -1dn 
1
4n +

Á

a
q

n = 1
scoth ndxn

a
q

n = 1
scsch ndxn

a
q

n = 0
 
s -1dnsx - 1d2n + 1

2n + 1a
q

n = 0
 
sn + 1dx2n - 1

3n
Elemanter Olmayan ‹ntegraller
77–80 Problemlerinde, integrallerin değerine büyüklüğü 10–8’den kü-
çük bir hatayla yaklaşım yapmak için seri kullanın. (Yanıt bölümü in-
tegrallerin değerlerini 10 ondalık basamağa yuvarlanmış olarak verir.)

77. 78.

79. 80.

Belirsiz Formlar
81–86 problemlerinde:

a. Limiti hesaplamak için kuvvet serisi kullanın.

b. Hesabınızı desteklemek için bir grafik çizici kullanın.

81. 82.

83. 84.

85. 86.

87. sin 3x’in bir seri temsilini kullanarak, 

olmasını sağlayacak r ve s değerlerini bulun.

88. a. Bölüm 11.10, Örnek 9’daki csc x < 1@x + x@6 yaklaşımının
sin x < 6x@(6 + x2)  yaklaşımına yol açtığını gösterin.

b. ƒ(x) = sin x – x ve g(x) = sin x – (6x@(6 + x2)) fonksiyonlarının
grafiklerini karşılaştırarak sin x < x ve sin x < 6x@(6 + x2)
yaklaşımlarının hassaslıklarını karşılaştırın. Bulduklarınızı ta-
nımlayın.

Teori ve Örnekler
89. a.

serisinin yakınsadığını gösterin.

b. Serinin toplamına yaklaşım yapmak için sinüslerin n = 20’ye
kadar toplamının kullanılmasının getireceği hatanın büyüklü-
ğünü bulun. Yaklaşım çok mu büyük, çok mu küçüktür? Yanı-
tınızı açıklayın.

90. a. serisinin yakınsadığını gösterin.

b. Serinin toplamına yaklaşım yapmak için tanjantların
–tan (1@41)’e kadar toplamının kullanılmasının getireceği ha-
tanın büyüklüğünü bulun. Yaklaşım çok mu büyük, çok mu
küçüktür? Yanıtınızı açıklayın.

a
q

n = 1
 atan 

1
2n

- tan 
1

2n + 1
b

a
q

n = 1
 asin 

1
2n

- sin 
1

2n + 1
b

lim
x:0

 asin 3x

x3 +

r
x2 + sb = 0.

lim
y:0

 
y2

cos y - cosh y
lim
z :0 

 
1 - cos2 z

ln s1 - zd + sin z

lim
h:0

 
ssin hd>h - cos h

h2lim
t:0

 a 1
2 - 2 cos t

-

1
t2 b

lim
u:0

 
eu - e-u

- 2u
u - sin u

lim
x:0

 
7 sin x

e2x
- 1

L

1>64

0
 
tan-1 x

2x
 dx

L

1>2
0

 
tan-1 x

x  dx

L

1

0
x sin sx3d dx

L

1>2
0

e-x3

 dx

T

T

T

T



91. Aşağıdaki serinin yakınsaklık yarıçapını bulun.

92. Aşağıdaki serinin yakınsaklık yarıçapını bulun.

93. serisinin n. kısmi toplamının bir kapalı-
form formülünü bulun ve bunu kullanarak serinin yakınsaklığını
veya ıraksaklığını belirleyin.

94. Serinin n. kısmi toplamının n → ∞ iken limitini bularak
toplamını hesaplayın.

95. a. Aşağıdaki serinin yakınsaklık aralığını bulun.

b. Serinin tanımladığı fonksiyonun

şeklinde bir diferansiyel denklemi sağladığını gösterin ve a
ile b sabitlerini bulun.

96. a. x2@(1 + x) fonksiyonunun Maclaurin serisini bulun.

b. Seri x = 1’de yakınsar mı? Açıklayın.

97. ve negatif olmayan sayıların yakınsak seri-
leriyse, bn hakkında bir şey söylenebilir mi? Yanıtınızı
açıklayın.

98. ve negatif olmayan sayıların ıraksak seri-
leriyse, bn hakkında bir şey söylenebilir mi? Yanıtınızı
açıklayın.

99. dizisinin ve serisinin ikisinin de yakın-
sayacağını veya ikisinin de ıraksayacağını ispatlayın.

100. yakınsak ise ve her n için ise
serisinin de yakınsayacağını gösterin.

101. (Bölüm 4.7, Alıştırma 27’nin devamı) Bölüm 4.7’deki Alıştırma
27’yi yaptıysanız, pratikte Newyon yönteminin
ƒ(x) = (x – 1)40’ın kökünden,  x = 1, yararlı bir tahminini vere-
meyecek kadar uzakta durduğunu görmüşsünüzdür. Yine de
x0 
 1 olan herhangi bir başlama değeri için, Newton yöntemi-
nin ürettiği yaklaşımların x0, x1, x2,…, xn,… dizisinin gerçekten
1’e yakınsadığnı gösterin.

102. a1, a2, a3, …, an’nin aşağıdaki koşulları sağlayan pozitif sayılar
olduklarını varsayın.

i.

ii. serisi ıraksar.a2 + a4 + a8 + a16 +
Á

a1 Ú a2 Ú a3 Ú
Á ;

gq

n=1 san>s1 + andd
an 7 0gq

n=1 an

gq

k=1 sxk+ 1 - xkd5xn6
gq

n=1 an

gq

n=1 bngq

n=1 an

gq

n=1 an

gq

n=1 bngq

n=1 an

d2y

dx2 = xay + b

 +

1 # 4 # 7 # Á # s3n - 2d
s3nd!

 x3n
+

Á .

y = 1 +

1
6

 x3
+

1
180

 x6
+

Á

gq

k=2 s1>sk2
- 1dd

gq

n=2 ln s1 - s1>n2dd

a
q

n = 1
 

3 # 5 # 7 # Á # s2n + 1d
4 # 9 # 14 # Á # s5n - 1d

 sx - 1dn .

a
q

n = 1
 
2 # 5 # 8 # Á # s3n - 1d

2 # 4 # 6 # Á # s2nd
 xn .

Aşağıdaki serinin ıraksadığını gösterin.

103. Problem 102’deki sonucu kullanarak

serisinin ıraksadığını gösterin.

104. ’in değerini çabuk bir şekilde tahmin etmek istediği-
nizi varsayın. Bunu yapmanın birkaç yolu vardır.

a. ’i tahmin etmek için n = 2 ile yamuk kuralını kul-
lanın. 

b. x2ex’in Taylor serisinin sıfırdan farklı ilk üç terimini yazarak,
x2ex’in dördüncü Taylor polinomu P(x)’i elde edin.

için başka bir tahmin elde etmek üzere 

’i kullanın.

c. ƒ(x) = x2ex’in ikinci türevi her x � 0 için pozitiftir. Bunun, (a)
şıkkında elde edilen yamuk kuralı tahmininin neden çok
büyük olduğu sonucuna varmanızı sağladığını açıklayın.
(İpucu: İkinci türev size bir fonksiyonun grafiği hakkında ne
söyler? Bununla, bu grafiğin altında kalan alana yapılan ya-
muk yaklaşımının ilişkisi nedir?

d. ƒ(x) = x2ex’in bütün türevleri x � 0 için pozitiftir. Bunun ne-
den ƒ(x)’e [0, 1] aralığında yapılan bütün Maclaurin polinom
yaklaşımlarının çok küçük olduğu sonucuna varmanızı
sağladığını açıklayın. (İpucu: ƒ(x) = Pn(x) + Rn(x).)

e. ’i kısmi integrasyonla hesaplayın.

Fourier Serileri
105–108 problemlerindeki fonksiyonların Fourier serilerini bulun.
Her fonksiyonu çizin. 

105.

106.

107.

108. ƒsxd = ƒ sin x ƒ , 0 … x … 2p

ƒsxd = ep - x, 0 … x … p

x - 2p, p 6 x … 2p

ƒsxd = e x, 0 … x … p

1, p 6 x … 2p

ƒsxd = e0, 0 … x … p

1, p 6 x … 2p

1
1

0  
x2ex dx .

1
1

0  
x2ex dx .

1
1

0  
Psxd dx

1
1

0  
x2ex dx .

1
1

0  
x2ex dx .

1 + a
q

n = 2
 

1
n ln n

a1

1
+

a2

2
+

a3

3
+

Á
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Yak›nsakl›k veya Iraksakl›k 
1–4 alıştırmalarındaki formüllerle tanımlanan serilerinin
hangileri yakınsak, hangileri ıraksaktır? Yanıtınızı açıklayın.

1. 2.

3. 4.

5–8 alıştırmalarındaki formüllerle tanımlanan serilerinin
hangileri yakınsak, hangileri ıraksaktır? Yanıtınızı açıklayın.

5.

(İpucu: Birkaç terim yazarak, hangi çarpanların sadeleştiğini
görün ve genelleştirin.)

6. ise

7. ise

8. n tek ise, n çift ise

Taylor Serilerinin Merkezlerini Seçmek

Taylor formülü ƒ’nin x’teki değerini ƒ’nin ve türevlerinin x = a’daki
değerleri cinsinden ifade eder. Bundan dolayı, sayısal hesaplamalarda
noktasının, ƒ’nin ve türevlerinin değerlerini bildiğimiz bir nokta ol-
ması gerekir. Ayrıca, a’nın da ƒ’nin ilgilendiğimiz değerlerine,
(x – a)n + 1’in kalanı ihmal edebileceğimiz kadar küçük olmasını sağla-
yacak şekilde yakın olmasını isteriz. 

9–14 alıştırmalarında, fonksiyonu verilen nokta civarında temsil
etmesi için hangi Taylor serisini seçersiniz? (Birden fazla yanıt olabi-
lir.) Seçtiğiniz serinin sıfırdan farklı ilk dört terimini yazın.

9. cos x    x = 1 civarında 10. sin x     x = 6.3 civarında

11. ex x = 0.4 civarında 12. ln x       x = 1.3 civarında

13. cos x    x = 69 civarında 14. tan–1 x  x = 2 civarında

Teori ve Örnekler
15. a ve b, 0 � a � b olmak üzere sabitler olsun. 

dizisi yakınsar mı? Yakınsarsa, limiti nedir? 
5san

+ bnd1>n6

 +

ƒsndsad
n!

 sx - adn
+

ƒsn + 1dscd
sn + 1d!

 sx - adn + 1

ƒsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2
+

Á

an = n>3nan = 1>3n

a1 = a2 = 1, an + 1 =

1
1 + an

if n Ú 2

a1 = a2 = 7, an + 1 =

n
sn - 1dsn + 1d

 an if n Ú 2

a1 = 1, an + 1 =

nsn + 1d
sn + 2dsn + 3d

 an

gq

n=1 an

a
q

n = 2
 
logn sn!d

n3a
q

n = 1
s -1dn tanh n

a
q

n = 1
 
stan-1 nd2

n2
+ 1a

q

n = 1
 

1

s3n - 2dn + s1>2d

gq

n=1 an
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16. Aşağıdaki sonsuz serinin limitini bulun.

17. Aşağıdaki seriyi hesaplayın.

18.

serisinin mutlak yakınsak olduğu bütün  x değerlerini bulun.

19. Euler sabitini genelleştirmek Şekil, ikinci türevi (0, �)
aralığında pozitif olan iki kere türetilebilen, azalan bir pozitif ƒ
fonksiyonunun grafiğini göstermektedir. Her n için An sayısı, eğri
ile (n, ƒ(n)) ve (n + 1, ƒ(n + 1)) noktalarını birleştiren aya benzer
bölgenin alanıdır. 

a. Şekli kullanarak  olduğunu
gösterin.

b. Aşağıdaki limitin varlığını gösterin.

c. Sonra aşağıdaki limitin varlığını gösterin.

ƒ(x) = 1@x ise, (c) şıkkındaki limit Euler sabitidir (Bölüm
11.3, Alıştırma 41). (Kaynak: “Convergence with Pictures”, P .J.
Rippon, American Mathematical Monthly, Vol. 93, No. 6, 1986,
sayfa 476-78.)

lim
n: q

 c a
n

k= 1
 ƒskd -

L

n

1
ƒsxd dx d .

lim
n: q

 c a
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 sƒs1d + ƒsndd -

L

n

1
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n=1 An 6 s1>2dsƒs1d - ƒs2dd .

a
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nxn
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a
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1
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3
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7
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20. Bu alıştırma alt kenarları 2b olan “yukarı doğru” eşkenar üçgenle
ilgilidir. Şeklin devamının gösterdiği gibi esas üçgenden “aşağı
doğru” eşkenar üçgenler çıkarılmaktadır. Esas üçgenden çıkarılan
üçgenlerin alanlarının toplamı sonsuz bir seri oluşturur.

a. Bu sonsuz seriyi bulun.

b. Bu sonsuz serinin toplamını ve dolayısıyla esas üçgenden
çıkarılan toplam alanı bulun.

c. Esas üçgendeki her nokta çıkarılır mı? Neden çıktığını veya
çıkmadığını açıklayın.

21. a. a bir sabit olmak üzere

limiti a’nın değerine bağlı mıdır? Bağlıysa, nasıl?

b. a ve b birer sabit ve b 
 0 olmak üzere

limiti b’nin değerine bağlı mıdır? Bağlıysa, nasıl?

c. (a) ve (b)’de bulduklarınızı analizle doğrulayın.

22. yakınsak ise 

serisinin de yakınsak olacağını gösterin.

a
q

n = 1
 a1 + sin sand

2
bn

gq

n=1 an

lim
n: q

 a1 -

cos sa>nd
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bn

, a and b constant, b Z 0,

lim
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cos sa>nd
n bn

, a constant ,

2b

2b 2b
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2b 2b
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2b 2b • • •
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y � f(x)

0 2 3 4 5
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f(2)
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23.

kuvvet serisinin yakınsaklık yarıçapını 5 yapacak b değerini bu-
lun.

24. sin x, ln x ve ex’in polinom olmadığını nereden biliyorsunuz?
Yanıtınızı açıklayın.

25.

limitinin sonlu olduğu bir a değeri bulun ve limiti hesaplayın.

26.

olacak şekilde  a ve b değerlerini bulun.

27. Raabe (veya Gauss) testi İspat vermeden göstereceğimiz
aşağıdaki test Oran Testi’nin genişletilmişidir.

Raabe testi: pozitif sabitlerden oluşan bir seri ise ve
her n � N için olmak üzere

(1)

olmasını sağlayacak C, K ve N sabitleri varsa, serisi,
C � 1 ise yakınsak ve C � 1 ise ıraksaktır.

Raabe testinin sonuçlarının ve 
serileri hakkında bildiklerinizle uyuştuğunu gösterin.

28. (Alıştırma 27’nin devamı.) serisinin terimlerinin 

tekrarlama formülüyle verildiğini varsayın. Serinin yakınsak olup
olmadığını belirlemek için Raabe testini kullanın.

29. yakınsak ise her n için  ve ise

a. serisinin yakınsak olduğunu gösterin.

b. yakınsak mıdır? Açıklayın.

30. (Alıştırma 29’un devamı) yakınsak ise ve her n için
ise,  ’in yakınsak olduğunu gös-

terin. (İpucu: Önce olduğunu gös-
terin.)

31. Nicole Oresme’nin Teoremi Nicole Oresme’nin

olduğunu söyleyen teoremini ispatlayın. 

(İpucu: denkleminin iki tarafının da
türevini alın.) )

1 + gq

n=1 xn .1>s1 - xd =

1 +

1
2

 #  2 +

1
4

 #  3 +
Á

+

n

2n - 1 +
Á

= 4.

ƒ ln s1 - and ƒ … an>s1 - and .
gq

n=1 ln s1 - and1 7 an 7 0
gq

n=1 an

gq

n=1  an>s1 - and

gq

n=1  an
2

an 7 0an Z 1gq

n=1  an

u1 = 1, un + 1 =

s2n - 1d2

s2nds2n + 1d
 un .

gq

n=1  un

gq

n=1 s1>nd .gq

n=1 s1>n2d

gq

n=1 un

un
un + 1

= 1 +

C
n +

ƒsnd

n2 ,

ƒ ƒsnd ƒ 6 K
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lim
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cos saxd - b
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lim
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sin saxd - sin x - x

x3

a
q

n = 2
 
bnxn

ln n
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32. a. için,

bağıntısının iki kere türevin alıp, sonucu x ile çarpıp, x yerine
1@x yazarak aşağıdaki eşitliği gösterin.

b. (a) şıkkını kullanarak

denkleminin 1’den büyük gerçek çözümünü bulun.

33. ’nin hızlı bir tahmini. Bölüm 11.1’deki Alıştırma 127’yi
yaptıysanız, x0 = 1 ile başlayan ve xn + 1 = xn + cos xn tekrarlama
formülüyle üretilen dizinin hızla p@2’ye yakınsadığını görmüşsü-
nüzdür. Yakınsaklığın süratini açıklamak için, �n = (p@2) – xn ol-
sun. (Aşağıdaki şekle bakın.) Bu durumda

olur. Bu eşitliği kullanarak,

olduğunu gösterin.

34. pozitif sayılardan oluşan yakınsak bir seriyse,
’in yakınsaklığı hakkında bir şey söylenebilir

mi? Yanıtınızı açıklayın.

35. Kalite kontrolü.

a. 1@(1 – x)2 için bir seri elde etmek üzere

serisinin türevini alın. 

1
1 - x

= 1 + x + x2
+

Á
+ xn

+
Á

gq

n=1 ln s1 + and?
gq

n=1  an

1

cosxn

0

1

xn

xn

en

x

y

0 6 Pn + 1 6

1
6

 sPnd3 .

 =

1
3!

 APn B3 -

1
5!

 APn B5 +
Á .

 = Pn - sin Pn

 = Pn - cos ap
2

- Pnb
 Pn + 1 =

p

2
- xn - cos xn

P/2

x = a
q

n = 1
 
nsn + 1d

xn .

a
q

n = 1
 x

n + 1
=

x2

1 - x

a
q

n = 1
 
nsn + 1d

xn =

2x2

sx - 1d3

ƒ x ƒ 7 1 b. İki zar atıldığında, 7 gelme olasılığı p = 1@6’dır. Zarları sürekli
olarak atarsanız, ilk olarak n.inci atışta 7 gelme olasılığı
q = 1 – p = 5@6 olmak üzere qn–1 p’dir. İlk olarak bir 7 gelene
kadar atış sayısının beklenen değeri ’dir. Bu
serinin toplamını bulun.

c. Endüstriyel bir operasyona istatistik kontrol uygulayan bir
mühendis olarak, oynar kayıştan rastgele alınan parçaları ince-
liyorsunuz. Örneklenen her parçayı “iyi” veya “kötü” olarak
sınıflıyorsunuz. Bir parçanın iyi olma olasılığı p ve kötü olma
olasılığı q = 1 – p ise, bulunan ilk kötü parçanın incelenen
n.inci parça olma olasılığı  pn–1q’dur. İlk kötü parçaya kadar
(kötü parçayı da içerecek şekilde)  incelenen ortalama parça
sayısı  ’dur. 0 � p � 1 olduğunu varsayarak bu
toplamı hesaplayın.

36. Beklenen değer Rastgele bir X değişkeninin 1, 2, 3,… değer-
lerini p1, p2, p3, … olasılıklarıyla aldığını varsayın. Burada pk

X’in k’ye eşit olma olasılığıdır (k = 1, 2, 3, …). Ayrıca pk � 0 ve
olduğunu da varsayın. E(X) ile gösterilen X’in

beklenen değeri, serinin yakınsaması koşuluyla, 
sayısıdır. Aşağıdaki her durum için, olduğunu gös-
terin ve varsa E(X)’i hesaplayın (İpucu: Alıştırma 35’e bakın).

a. b.

c.

37. Güvenli ve etkili dozaj Tek bir ilaç dozundan dolayı kandaki
konsantrasyon, zamanla ilaç vucüttan atıldıkça, normalde azalır.
Dolayısıyla, konsantrasyonun belirli bir seviyenin altına
düşmemesi için, dozların periyodik olarak tekrarlanması gereke-
bilir. Tekrarlanan dozların etkisi için bir model (n + 1) dozdan
hemen önce kalan konsantrasyonu

olarak verir. Burada C0 tek bir dozun sağladığı konsantrasyon
(mg/mL), k azalma sabiti (saat–1) ve t0 da dozlar arasındaki za-
mandır (saat). Şekle bakın.

a. Rn’yi kapalı formda tek bir kesir olarak yazın ve R = limn→∞ Rn

limitini bulun. 

b. C0 = 1 mg/mL, k = 0.1 sa–1 ve t0 = 10 sa için R1 ve R10’u
hesaplayın. R10 R’nin ne kadar iyi bir tahminidir?
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+
Á
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5k - 1

6k
pk = 2-k

gq

k=1 pk = 1
gq

k=1 kpk ,
gq

k=1  pk = 1.

gq

n=1 npn - 1q .

gq

n=1 nqn - 1p .

T



c. k = 0.01 sa–1 ve t0 = 10 sa ise, Rn � (1@2) R olmasını sağlaya-
cak en küçük n değerini bulun.

(Kaynak: Prescribing Safe and Effective Dosage, B. Horelick ve
S. Koont, COMAP, Inc., Lexington MA.)

38. İki doz arasındaki zaman (Alıştırma 37’nin devamı) Eğer bir
ilacın bir CL konsantrasyonunun altında etkisiz, daha yüksek bir
CH konsantrasyonunun üstünde ise zararlı olduğu biliniyorsa,
güvenli (CH’nin üstünde değil), ama etkili (CL’nin altında değil)
bir konsantrasyon sağlayacak C0 ve t0 değerlerinin bulunması
gerekir. Şekle bakın. Dolayısıyla

R = CL ve C0 + R = CH 

Yani, C0 = CH – CL olur.  Bu değerler Alıştırma 37’nin (a) şıkkın-
da elde edilen R denklemine koyulursa, ortaya çıkan denklem

şeklinde sadeleşir. Etkili bir seviyeye hızlı bir şekilde ulaşmak
için, CH mg/mL’lık bir konsantrasyon üretecek bir “yükleme” do-
zu verilebilir. Bundan sonra her t0 saatte bir konsantrasyonu
C0 = CH – CL mg/mL miktarında arttıracak bir dozla devam
edilebilir.   

a. t0 için yukarıda verilen denklemi doğrulayın.

b. k = 0.05 sa–1 ve en yüksek güvenli konsantrasyon e kere en dü-
şük etkili konsantrasyon ise, dozlar arasındaki güvenli ve etki-
li konsantrasyonu garantileyecek zaman uzunluğunu bulun.

c. CH = 2 mg@mL, CL = 0.5 mg@mL ve k = 0.02 sa–1 ise, ilacı
vermek için bir program belirleyin.

d. k = 0.2 sa–1 olduğunu ve en küçük etkili konsantrasyonun 0.03
mg@mLolduğunu varsayın. 0.1 mg@mL’lik konsantrasyon sağ-
layan tek bir doz veriliyor. İlaç yaklaşık ne kadar süre etkili
kalacaktır?

39. Sonsuz bir çarpım

sonsuz çarpımının, çarpımın doğal logaritması alınarak elde
edilen

a
q

n = 1
 ln s1 + and ,

q
q

n = 1
s1 + and = s1 + a1ds1 + a2ds1 + a3d Á

t0 =

1
k

 ln 
CH

CL
.

t0

CL

0 Zaman

K
an

da
ki

 k
on

sa
nt

ra
sy

on

C0

En yüksek güvenli seviye
CH

En düşük etkili seviye

t

C

serisi yakınsaksa, yakınsayacağı söylenir. Her n için, an � –1 ise
ve   yakınsak ise çarpımın yakınsak olacağını  gösterin.
(İpucu: uan u � 1@2  ise

olduğunu gösterin.)

40. p bir sabitse, 

serisinin 

a. p � 1 ise yakınsayacağını, b.  p � 1 ise ıraksayacağını göste-
rin. Genelde,  ƒ1(x) = x, ƒn+1(x) = ln (ƒn(x)) ise ve n 1, 2, 3, …
değerlerini alıyorsa, ƒ2(x) = ln x, ƒ3(x) = ln (ln x)), … buluruz.
ƒn(a) � 1 ise, 

p � 1 ise yakınsar,  p � 1 ise ıraksar.

41. a. Şu teoremi ispatlayın: , her toplamının
sınırlı olmasını sağlayacak şekilde sayılardan oluşan bir
diziyse, serisi yakınsar ve değeri

’e eşittir.

İspatın taslağı: c1 yerine t1 ve n � 2 için cn yerine
tn – tn – 1 yazın. ise

olduğunu gösterin. Bir M sabiti için, olduğundan, 

serisi mutlak yakınsaktır ve n → ∞ iken s2n+1’in bir limiti var-
dır.  ise, n → ∞ iken, s2n+1– s2n = c2n+1@(2n
+1) sıfıra yaklaşır, çünkü u c2n+1u = u t2n+1 – t2nu � 2M’dir.
Dolayısıyla serisi yakınsar ve limit

olur.

b. Bahsedilen teoremin aşağıdaki alterne harmonik seriye nasıl
uygulanacağını gösterin.
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c.

serisinin yakınsadığını gösterin (İlk terimden sonra, işaretleri
iki negatif, iki pozitif, iki negatif, iki pozitif şeklinde gider).

42. için for
yakınsaklığı

a. Uzun bölme veya başka bir yolla

olduğunu gösterin.

b. (a) şıkkındaki denklemi 0’dan x’e kadar t’ye göre integre
ederek

olmak üzere,

olduğunu gösterin.

Rn + 1 = s -1dn + 1

L

x

0
 

t n + 1

1 + t
 dt .

 + s -1dn 
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c. x � 0 ise,

olduğunu gösterin.

İpucu: t,  0’dan x’e değişirken, 

ve

d. –1� x � 0 ise

olduğunu gösterin.

İpucu: x � t � 0 ise, ve

e. Yapılan tartışmaları kullanarak,

serisinin –1 � x � 1 için, ln (1 + x)’e yakınsadığını gösterin.)
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Bölüm 11 Teknoloji Uygulama Projeleri   

Mathematica Maple Modülü
Zıplayan Top
Model, zıplayan bir topun yüksekliğini ve zıplaması sona erene kadar geçen zamanı tahmin eder.

Mathematica Maple Modülü
Bir Fonksiyonun Taylor Polinomları Yaklaşımları
Bir grafik animasyon, Taylor polinomlarının, tanım kümeleri içindeki bir aralık üzerinde her mertebeden türevleri var olan fonksiyonlara
yakınsadıklarını  göstermektedir.

/

/

’nin ln (1 + x)’e 

olur.

a

olur.

a

ve


