
CHAPTER 10  INFINITE SEQUENCES AND SERIES

10.1  SEQUENCES

 1. a 0, a , a , a" # $ %
� "� " � �

#œ œ œ œ � œ œ � œ œ �1 1 2 1 3 2 1 4 3
1 4 3 9 4 16# # # #

 2. a 1, a , a , a" # $ %
" "
#œ œ œ œ œ œ œ œ1 1 1 1 1

1! ! 2 3! 6 4! 24

 3. a 1, a , a , a" # $ %
� �" � �
#� � � �

" " "œ œ œ œ � œ œ œ œ �( 1) ( ) ( 1) ( 1)
1 4 1 3 6 1 5 8 1 7

# $ % &

 4. a 2 ( 1) 1, a 2 ( 1) 3, a 2 ( 1) 1, a 2 ( 1) 3" # $ %
" # $ %œ � � œ œ � � œ œ � � œ œ � � œ

 5. a , a , a , a" # $ %# # # # #
" " " "

#
œ œ œ œ œ œ œ œ2 2 2 2

2 2# $ &

# $ %

%

 6. a , a , a , a" # $ %
�" " � � �"
# #œ œ œ œ œ œ œ œ2 2 1 3 2 1 7 2 15

2 4 2 8 162

# $ %

# $ %

 7. a 1, a 1 , a , a , a , a ," # $ % & '
" " " "
# # # # # #

œ œ � œ œ � œ œ � œ œ � œ œ3 3 7 7 15 15 31 63
4 4 8 8 16 32# $ %

 a , a , a , a( ) * "!œ œ œ œ127 255 511 1023
64 128 256 512

 8. a 1, a , a , a , a , a , a , a ," # $ % & ' ( )
" " " " " " "
# # # #œ œ œ œ œ œ œ œ œ œ œ

ˆ ‰ ˆ ‰ ˆ ‰" " "

# #

3 6 4 4 5 1 0 7 0 5040 40,320
6 4

 a , a* "!
" "œ œ362,880 3,628,800

 9. a 2, a 1, a , a , a ," # $ % &
� �

# # # #
" " "� � � �

œ œ œ œ œ � œ œ � œ œ( 1) (2) ( 1) (1)
2 4 8

( 1) ( 1)# $ % "

#

& "ˆ ‰ ˆ ‰
4

 a , a , a , a , a' ( ) * "!
" " " " "

# #œ œ � œ � œ œ16 3 64 1 8 256

10. a 2, a 1, a , a , a , a ," # $ % & '
� �
# #

� �" "œ � œ œ � œ œ � œ œ � œ œ � œ �1 ( 2) 2 ( 1)
3 3 4 5 5 3

2 23 4
† †

† †

ˆ ‰ ˆ ‰2
3

"

#

 a , a , a , a( ) * "!
" "œ � œ � œ � œ �2 2

7 4 9 5

11. a 1, a 1, a 1 1 2, a 2 1 3, a 3 2 5, a 8, a 13, a 21, a 34, a 55" # $ % & ' ( ) * "!œ œ œ � œ œ � œ œ � œ œ œ œ œ œ

12. a 2, a 1, a , a , a 1, a 2, a 2, a 1, a , a" # $ % & ' ( ) * "!
" " " "
# � # # #

�

�
œ œ � œ � œ œ œ œ � œ � œ œ � œ � œ

ˆ ‰ ˆ ‰ˆ ‰
" "

# #

"

#
1

13. a ( 1) , n 1, 2,  14. a ( 1) , n 1, 2, n n
n 1 nœ � œ á œ � œ á�

15. a ( 1) n , n 1, 2,  16. a , n 1, 2, n n
n 1 ( )

nœ � œ á œ œ á� # �" n 1�

#

17. a , n 1, 2,  18. a , n 1, 2, n n
2 2n 5

3 n 2 n n 1œ œ á œ œ á
n 1�a b a b� �

�

19. a n 1, n 1, 2,  20. a n 4 , n 1, 2, n nœ � œ á œ � œ á#

21. a 4n 3, n 1, 2,  22. a 4n 2 , n 1, 2, n nœ � œ á œ � œ á

23. a , n 1, 2,  24. a , n 1, 2, n n
3n 2 n

n! 5œ œ á œ œ á� 3

n 1�
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570 Chapter 10 Infinite Sequences and Series

25. a , n 1, 2,  26. a , n 1, 2, n n
1 ( 1) n ( 1) nœ œ á œ œ Ú Û œ á� �

# # #

� � �n 1 n� " "

# #
ˆ ‰

27.  lim  2 (0.1) 2  converges (Theorem 5, #4)
n Ä _

� œ Ên

28.  lim    lim  1 1  converges
n nÄ _ Ä _

n ( ) ( 1)
n n

� �" �n n

œ � œ Ê

29.  lim    lim    lim   1  converges
n n nÄ _ Ä _ Ä _

"� �
�# #

�

�
2n 2

1 n
2
2

œ œ œ � Ê
ˆ ‰ˆ ‰
"

"

n

n

30.  lim    lim     diverges
n nÄ _ Ä _

2n
1 3 n

2 n  

3

�"
�

�

�È
È Š ‹
Š ‹œ œ �_ Ê

"

"

È

È

n

n

31.  lim    lim   5  converges
n nÄ _ Ä _

"�
�

�

�
5n

n 8n

5

1

%

% $

"

%

œ œ � Ê
Š ‹

ˆ ‰n
8
n

32.  lim    lim    lim   0  converges
n n nÄ _ Ä _ Ä _

n 3 n 3
n 5n 6 (n 3)(n 2) n

� � "
� � � � �## œ œ œ Ê

33.  lim    lim    lim  (n 1)   diverges
n n nÄ _ Ä _ Ä _

n 2n 1
n 1 n 1

(n 1)(n 1)# � �
� �

� �œ œ � œ _ Ê

34  lim    lim     diverges
n nÄ _ Ä _

"�
�

�

�

n
70 4n

n

4

$

# œ œ _ Ê
Š ‹
Š ‹

"

#

#

n
70
n

35.  lim  1 ( 1)  does not exist  diverges 36.  lim  ( 1) 1  does not exist  diverges
n nÄ _ Ä _

a b ˆ ‰� � Ê � � Ên n "
n

37.  lim  1  lim  1   converges
n nÄ _ Ä _

ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰n
n n n n
�" " " " " "
# # # #� œ � � œ Ê

38.  lim  2 3 6  converges 39.  lim   0  converges
n nÄ _ Ä _

ˆ ‰ ˆ ‰� � œ Ê œ Ê" "
# # # �

�"
n n

n 1( )
n 1

�

40.  lim   lim   0  converges
n nÄ _ Ä _

ˆ ‰� œ œ Ê"
# #

�"n ( )n

n

41.  lim   lim    lim  2  converges
n n nÄ _ Ä _ Ä _

É É Ê Š ‹ È2n 2n
n 1 n 1� �œ œ œ Ê2

1� "

n

42.  lim    lim    diverges
n nÄ _ Ä _

" "
(0.9) 9

0
n œ œ _ Êˆ ‰n

43.  lim  sin sin  lim  sin 1  converges
n nÄ _ Ä _

ˆ ‰ ˆ ‰Š ‹1 1 1

# # #
" "� œ � œ œ Ên n

44.  lim  n  cos (n )  lim  (n )( 1)  does not exist  diverges
n nÄ _ Ä _

1 1 1œ � Ên

45.  lim   0 because   converges by the Sandwich Theorem for sequences
n Ä _

sin n sin n
n n n nœ � Ÿ Ÿ Ê" "

46.  lim   0 because 0   converges by the Sandwich Theorem for sequences
n Ä _

sin n sin n# #

# # #
"

n n nœ Ÿ Ÿ Ê

47.  lim    lim   0  converges (using l'Hopital's rule)^
n nÄ _ Ä _

n
 ln 2# #
"

n nœ œ Ê
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48.  lim    lim    lim    lim     diverges (using l'Hopital's rule)^
n n n nÄ _ Ä _ Ä _ Ä _

3 3  ln 3
n 3n 6n 6

3 (ln 3) 3 (ln 3)n n n n

$ #

# $

œ œ œ œ _ Ê

49.  lim    lim    lim    lim   0  converges
n n n nÄ _ Ä _ Ä _ Ä _

ln (n )
n

2 n
n 1 1

�"
� �È È Š ‹

Š ‹œ œ œ œ Ê
ˆ ‰
Š ‹

"

�

"

#

"

n 1

n

2
n

nÈ

È

50.  lim    lim   1  converges
n nÄ _ Ä _

ln n
ln 2n œ œ Ê

ˆ ‰
ˆ ‰

"

n
2
2n

51.  lim  8 1  converges (Theorem 5, #3)
n Ä _

1 nÎ œ Ê

52.  lim  (0.03) 1  converges (Theorem 5, #3) n Ä _
1 nÎ œ Ê

53.  lim  1 e   converges (Theorem 5, #5)
n Ä _

ˆ ‰� œ Ê7
n

n (

54.  lim  1  lim  1 e   converges (Theorem 5, #5)
n nÄ _ Ä _

ˆ ‰ ’ “� œ � œ Ê" �" �"
n n

( )n n

55.  lim  10n  lim  10 n 1 1 1  converges (Theorem 5, #3 and #2)
n nÄ _ Ä _

Èn œ œ œ Ê1 n 1 nÎ Î
† †

56.  lim  n  lim  n 1 1  converges (Theorem 5, #2)
n nÄ _ Ä _

È ˆ ‰Èn n# # #œ œ œ Ê

57.  lim  1  converges (Theorem 5, #3 and #2)
n Ä _

ˆ ‰3
n 1

1 n  lim  3

 lim  n

Î "œ œ œ Ên

n

Ä_

Ä_

1 n

1 n

Î

Î

58.  lim  (n 4)  lim  x 1  converges; (let x n 4, then use Theorem 5, #2)
n xÄ _ Ä _

� œ œ Ê œ �1 n 4 1 xÎÐ � Ñ Î

59.  lim     diverges (Theorem 5, #2)
n Ä _

ln n
n  lim  n

 lim  ln n

11 n 1 nÎ Îœ œ œ _ Ên

n

Ä_

Ä_

_

60.  lim  ln n ln (n 1)  lim  ln ln  lim   ln 1 0  converges
n n nÄ _ Ä _ Ä _

c d ˆ ‰ Š ‹� � œ œ œ œ Ên n
n 1 n 1� �

61.  lim  4 n  lim  4 n 4 1 4  converges (Theorem 5, #2)
n nÄ _ Ä _

È Èn nn œ œ œ Ê†

62.  lim  3  lim  3  lim  3 3 9 1 9  converges (Theorem 5, #3)
n n nÄ _ Ä _ Ä _

Èn 2n 1 2 1 n 1 n� � Î # Îœ œ œ œ Êa b
† †

63.  lim    lim    lim  0 and 0   lim   0 converges
n n n nÄ _ Ä _ Ä _ Ä _

n! n! n!
n n n n n n n n n

2 3 (n 1)(n)
n n nœ Ÿ œ   Ê œ Ê" â �

â
"† †

† † †

ˆ ‰
64.  lim   0  converges (Theorem 5, #6)

n Ä _
( 4)

n!
� n

œ Ê

65.  lim    lim     diverges (Theorem 5, #6)
n nÄ _ Ä _

n!
106n (10 )n

n!

œ œ _ Ê"Š ‹'

66.  lim    lim     diverges (Theorem 5, #6)
n nÄ _ Ä _

n!
2 3n n 6n

n!

œ œ _ Ê"ˆ ‰

67.  lim   lim  exp  ln  lim  exp e   converges
n n nÄ _ Ä _ Ä _

ˆ ‰ ˆ ‰ ˆ ‰ˆ ‰" " " �ÎÐ Ñ �"
n ln n n ln n

1 ln n ln 1 ln nœ œ œ Ê
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572 Chapter 10 Infinite Sequences and Series

68.  lim  ln 1 ln  lim  1 ln e 1  converges (Theorem 5, #5)
n nÄ _ Ä _

ˆ ‰ ˆ ‰Š ‹� œ � œ œ Ê" "
n n

n n

69.  lim   lim  exp n ln  lim  exp
n n nÄ _ Ä _ Ä _

ˆ ‰ ˆ ‰ˆ ‰ Š ‹3n 3n
3n 1 3n 1

n ln (3n 1) ln (3n 1)�" �"
� �

� � �œ œ "

n

  lim  exp  lim  exp exp e   convergesœ œ œ œ Ê
n nÄ _ Ä _� � Š ‹ ˆ ‰3 3

3n 1 3n 1

n

� �

"

#

�

�Š ‹
6n 6

(3n 1)(3n 1) 9

#

� �
#Î$

70.  lim   lim  exp n ln  lim  exp  lim  exp
n n n nÄ _ Ä _ Ä _ Ä _

ˆ ‰ ˆ ‰ˆ ‰ Š ‹ � �n n
n 1 n 1

n ln n ln (n 1)
� �

� �œ œ œˆ ‰ Š ‹"

" "

�

"

#n

n n 1

n

�

�

  lim  exp e   convergesœ � œ Ê
n Ä _

Š ‹n
n(n 1)

#

�
�"

71.  lim   lim  x x  lim  exp  ln x  lim  exp
n n n nÄ _ Ä _ Ä _ Ä _

ˆ ‰ ˆ ‰ ˆ ‰ˆ ‰ Š ‹x
2n 1 n 1 n n 1 n

1 n 1 n ln (2n 1)n

� # � # �

Î " " "Î � �œ œ œ

 x  lim  exp xe x, x 0  convergesœ œ œ � Ê
n Ä _

ˆ ‰�
�

!2
2n 1

72.  lim  1  lim  exp n ln 1  lim  exp  lim  exp
n n n nÄ _ Ä _ Ä _ Ä _

ˆ ‰ ˆ ‰ˆ ‰ � � – —� œ � œ œ" "
n n

n
# #

ln 1 1Š ‹ ‚
ˆ ‰

Š ‹ Š ‹
Š ‹

� �

�

"

#

"

$ #

"

"

#

n

n

2
n n

n

  lim  exp e 1  convergesœ œ œ Ê
n Ä _

ˆ ‰�
�

!2n
n 1#

73.  lim    lim   0  converges (Theorem 5, #6)
n nÄ _ Ä _

3 6 36
2 n! n!

n n n

n
†

†

� œ œ Ê

74.  lim    lim    lim   0  converg
n n nÄ _ Ä _ Ä _

ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰
10 12 10 120
11 11 11 121

n n n n

9 11 12 9 12 11 108
10 12 11 10 11 12 110

n n n n n n n
� � �

œ œ œ Ê
1

es

 (Theorem 5, #4)

75.  lim  tanh n  lim    lim    lim    lim  1  converges
n n n n nÄ _ Ä _ Ä _ Ä _ Ä _

œ œ œ œ " œ Êe e e 2e
e e e 1 2e

n n 2n 2n

n n 2n 2n
� �"
� �

�

�

76.  lim  sinh (ln n)  lim    lim     diverges
n n nÄ _ Ä _ Ä _

œ œ œ _ Êe e
2

nln n ln n
n� �

#

�
"ˆ ‰

77.  lim    lim    lim    lim     converges
n n n nÄ _ Ä _ Ä _ Ä _

n  sin
2n 1

# "ˆ ‰
n

� #
"œ œ œ œ Ê

sin coscosˆ ‰ ˆ ‰
Š ‹ Š ‹

ˆ ‰ˆ ‰ Š ‹
ˆ ‰

" "

"

# # $

" "

#n n
2 2 2
n n n n

n n
2
n� � �

� �

�#�

78.  lim  n 1 cos  lim    lim    lim  sin 0  converges
n n n nÄ _ Ä _ Ä _ Ä _

ˆ ‰ ˆ ‰� œ œ œ œ Ê" "
n n

ˆ ‰
ˆ ‰

� ‘ˆ ‰ Š ‹
Š ‹

"� cos sin"

"

" "

#

"

#

n

n

n n

n

79.  lim  n sin  lim   lim   lim  cos cos 0 1 converges
n n n nÄ _ Ä _ Ä _ Ä _

È Š ‹ Š ‹1 1
n n

sin cos

È È
Š ‹ Š ‹Š ‹

œ œ œ œ œ Ê
1 1 1

n n
1 1

n

2n3 2

2n3 2

È È

È

�

�

Î

Î

80.  lim  3 5  lim  exp ln 3 5  lim  exp  lim  exp
n n n nÄ _ Ä _ Ä _ Ä _

a b a b’ “ ’ “ – —n n n n1 n 1 n ln 3 5
n 1� œ � œ œÎ Î �a bn n 3 ln 3 5 ln 5n n

3 5n n
�

�

  lim  exp  lim  exp exp ln 5 5œ œ œ œ
n nÄ _ Ä _

’ “ ’ “ a bŠ ‹
ˆ ‰ ˆ ‰ˆ ‰3n

5n

3 3n n
5 5n

3
5

nln 3 ln 5

1 1

ln 3 ln 5�

� �

�

81.  lim  tan n   converges 82.  lim    tan n 0 0  converges
n nÄ _ Ä _

�" �"
# #

"œ Ê œ œ Ê1 1Èn
†
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83.  lim   lim  0  converges (Theorem 5, #4)
n nÄ _ Ä _

ˆ ‰ ˆ ‰Š ‹Š ‹" " " "
3 3

n n

2 2

n
� œ � œ ÊÈ Èn

84.  lim  n n  lim  exp  lim  exp e 1  converges
n n nÄ _ Ä _ Ä _

È ’ “ ˆ ‰n # � �
�

!� œ œ œ œ Êln n n
n n n

2n 1a b#

#

85.  lim    lim    lim    lim   0  converges
n n n nÄ _ Ä _ Ä _ Ä _

(ln n) 200 (ln n) 200 199 (ln n)
n n n n

200!#!! "** "*)

œ œ œ á œ œ Ê†

86.  lim    lim   lim    lim    lim   0  converges
n n n n nÄ _ Ä _ Ä _ Ä _ Ä _

(ln n) 10(ln n) 80(ln n)
n n n n

3840& % $È È È Èœ œ œ œ á œ œ Ê– —Š ‹
Š ‹

5(ln n)
n

n

%

"

#È

87.  lim  n n n  lim  n n n  lim    lim   
n n n nÄ _ Ä _ Ä _ Ä _

Š ‹ Š ‹Š ‹È È� � œ � � œ œ# # � �

� � � �

"

� �

n n n
n n n n n n

n

1 1

ÈÈ È É
#

# # "

n

   convergesœ Ê"
#

88.  lim    lim   lim   
n n nÄ _ Ä _ Ä _

" "

� � � � � � � � �

� � � � � �
� �È È ÈÈ È ÈÈ ÈÈ È

n 1 n n n 1 n n n 1 n n

n 1 n n n 1 n n
1 n# # # # # #

# # # #

œ œŠ ‹Š ‹
  lim   2  convergesœ œ � Ê

n Ä _

É É
ˆ ‰

1 1

1

� � �

� �

" "

#

"

n n

n

89.  lim     dx  lim    lim   0  converges (Theorem 5, #1)
n n nÄ _ Ä _ Ä _

" " "
n x n n

ln n'
1

n

œ œ œ Ê

90.  lim   dx  lim    lim   1  if p 1  converges
n n nÄ _ Ä _ Ä _

'
1

n n

1

" " " " " "
� � �x 1 p x 1 p n p 1p p 1 p 1œ œ � œ � Ê’ “ ˆ ‰

� �

91. Since a  converges  lim a L  lim a  lim L L 1 L 72 L L 72 0n n n 1
72 72

1 a 1 L
2Ê œ Ê œ Ê œ Ê � œ Ê � � œ

n n nÄ _ Ä _ Ä _� � �n
a b

 L 9 or L 8; since a 0 for n 1 L 8Ê œ � œ �   Ê œn

92. Since a  converges  lim a L  lim a  lim L L L 2 L 6 L L 6 0n n n 1
a 6
a 2 L 2

L 6 2Ê œ Ê œ Ê œ Ê � œ � Ê � � œ
n n nÄ _ Ä _ Ä _�

�
� �

�n

n
a b

 L 3 or L 2; since a 0 for n 2 L 2Ê œ � œ �   Ê œn

93. Since a  converges  lim a L  lim a  lim 8 2a L 8 2L L 2L 8 0 L 2n n n 1 n
2Ê œ Ê œ � Ê œ � Ê � � œ Ê œ �

n n nÄ _ Ä _ Ä _� È È
 or L 4; since a 0 for n 3 L 4œ �   Ê œn

94. Since a  converges  lim a L  lim a  lim 8 2a L 8 2L L 2L 8 0 L 2n n n 1 n
2Ê œ Ê œ � Ê œ � Ê � � œ Ê œ �

n n nÄ _ Ä _ Ä _� È È
 or L 4; since a 0 for n 2 L 4œ �   Ê œn

95. Since a  converges  lim a L  lim a  lim 5a L 5L L 5L 0 L 0 or L 5; sincen n n 1 n
2Ê œ Ê œ Ê œ Ê � œ Ê œ œ

n n nÄ _ Ä _ Ä _� È È
 a 0 for n 1 L 5n �   Ê œ

96. Since a  converges  lim a L  lim a  lim 12 a L 12 L L 25L 144 0n n n 1 n
2Ê œ Ê œ � Ê œ � Ê � � œ

n n nÄ _ Ä _ Ä _� ˆ ‰È Š ‹È
 L 9 or L 16; since 12 a 12 for n 1 L 9Ê œ œ � �   Ê œÈ n

97. a 2 , n 1, a 2. Since a  converges  lim a L  lim a  lim 2 L 2n 1 1 n n n 1
1 1 1
a a L� �œ �   œ Ê œ Ê œ � Ê œ �

n nn n nÄ _ Ä _ Ä _
Š ‹

 L 2L 1 0 L 1 2; since  a 0 for n 1 L 1 2Ê � � œ Ê œ „ �   Ê œ �2
n

È È
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98. a 1 a , n 1, a 1. Since a  converges  lim a L  lim a  lim 1 a L 1 Ln 1 n 1 n n n 1 n� �œ �   œ Ê œ Ê œ � Ê œ �È ÈÈ È
n n nÄ _ Ä _ Ä _

 L L 1 0 L ; since  a 0 for n 1 LÊ � � œ Ê œ �   Ê œ2 1 5 1 5
2 2n

„ �È È

99. 1, 1, 2, 4, 8, 16, 32, 1, 2 , 2 , 2 , 2 , 2 , 2 ,   x 1 and x 2  for n 2á œ á Ê œ œ  ! " # $ % &
" n

n 2�

100. (a) 1 2(1) 1, 3 2(2) 1; let f(a b) (a 2b) 2(a b) a 4ab 4b 2a 4ab 2b# # # # # # # # # #� œ � � œ ß œ � � � œ � � � � �

 2b a ; a 2b 1  f(a b) 2b a 1; a 2b 1  f(a b) 2b a 1œ � � œ � Ê ß œ � œ � œ Ê ß œ � œ �# # # # # # # # # #

 (b) r 2 2   r 2# � � � � � � „" "
� � �

# � �
#

n n� œ � œ œ œ Ê œ „ˆ ‰ Ê Š ‹a 2b a 4ab 4b 2a 4ab 2b
a b (a b) (a b) y y

a 2b# # # #

# # #

# #a b
n n

 In the first and second fractions, y n.  Let  represent the (n 1)th fraction where 1 and b n 1n   �     �a a
b b

 for n a positive integer 3.  Now the nth fraction is  and a b 2b 2n 2 n  y n.  Thus,  �     �   Ê  a 2b
a b
�
� n

  lim  r 2.
n Ä _ n œ È

101. (a)  f(x) x 2; the sequence converges to 1.414213562 2œ � ¸# È
 (b)  f(x) tan (x) 1; the sequence converges to 0.7853981635œ � ¸ 1

4

 (c)  f(x) e ; the sequence 1, 0, 1, 2, 3, 4, 5,  divergesœ � � � � � áx

102. (a)   lim  nf  lim    lim   f (0), where x
n x xÄ _ Ä ! Ä !

ˆ ‰" "� � w
n x x n

f( x) f(0 x) f(0)œ œ œ œ
? ?� �

? ?

? ?
?

 (b)   lim  n tan f (0) 1, f(x) tan x
n Ä _

�" w �"" "
�

ˆ ‰
n 1 0œ œ œ œ#

 (c)   lim  n e 1 f (0) e 1, f(x) e 1
n Ä _

a b1 n xÎ � œ œ œ œ �w !

 (d)   lim  n ln 1 f (0) 2, f(x) ln (1 2x)
n Ä _

ˆ ‰� œ œ œ œ �2 2
n 1 2(0)

w
�

103. (a)  If a 2n 1, then b 2n 2n 2n 2n, c 2n 2nœ � œ Ú Û œ Ú Û œ Ú � � Û œ � œ Ü Ý œ Ü � � Ýa 4n 4n 1 a# # #

# # # # #
� � " "# # #

  2n 2n 1 and a b (2n 1) 2n 2n 4n 4n 1 4n 8n 4nœ � � � œ � � � œ � � � � �# # # # # # % $ ##a b
  4n 8n 8n 4n 1 2n 2n 1 c .œ � � � � œ � � œ% $ # # ##a b
 (b)   lim    lim   1 or  lim    lim  sin  lim  sin 1

a a a a 2Ä _ Ä _ Ä _ Ä _ Ä Î

Ú Û Ú Û

Ü Ý Ü Ý

a a

a a

# #

# #

# #

# #

œ œ œ œ œ2n 2n
2n 2n 1

#

#

�
� � ) )

) 1

104. (a)   lim  (2n )  lim  exp  lim  exp  lim  exp e 1;
n n n nÄ _ Ä _ Ä _ Ä _

1
1 2n ln 2n

2n n
Î !

# #
"a b Š ‹

œ œ œ œ œˆ ‰ ˆ ‰� �1

2
2n
1

1

 n!  2n , Stirlings approximation  n! (2n )  for large values of n¸ Ê ¸ ¸ˆ ‰ ˆ ‰È Èn n n
e e e

1 2nn n
1 1

Î a b
 (b)    n                  n!                                                     

40 15.76852702 14.71517765
50 19.48325423 18.393

Èn n
e

97206
60 23.19189561 22.07276647

105. (a)   lim    lim    lim   0
n n nÄ _ Ä _ Ä _

ln n
n cn cnc c 1 cœ œ œ

ˆ ‰"
n
�

"

 (b)  For all 0, there exists an N e  such that n e   ln n   ln n ln% � œ � Ê � � Ê ��Ð ÑÎ �Ð ÑÎ "ln c ln c cln 
c

% % %

%
ˆ ‰

  n     0    lim   0nÊ � Ê � Ê � � Ê œ
Ä _

c
n n n

" " " "
% c c c% %¸ ¸

106. Let {a } and {b } be sequences both converging to L.  Define {c } by c b  and c a , wheren n n 2n n 2n 1 nœ œ
�

 n 1, 2, 3,  .  For all 0 there exists N  such that when n N  then a L  and there exists Nœ á � � � �% %" " #k kn

 such that when n N  then b L .  If n 1 2max{N N }, then  c L , so {c } converges to L.� � � � � ß � �# " #k k k kn n n% %
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107.  lim  n   lim  exp  ln n  lim  exp e 1
n n nÄ _ Ä _ Ä _

1 n
n n

Î !" "œ œ œ œˆ ‰ ˆ ‰
108.  lim  x   lim  exp  ln x e 1, because x remains fixed while n gets large

n nÄ _ Ä _
1 n

n
Î !"œ œ œˆ ‰

109. Assume the hypotheses of the theorem and let  be a positive number.  For all  there exists a N  such that% % "

 when n N  then a L   a L   L a , and there exists a N  such that when� � � Ê � � � � Ê � �" #k kn n n% % % %

 n N  then c L   c L   c L .  If n max{N N }, then� � � Ê � � � � Ê � � � ß# " #k kn n n% % % %

 L a b c L   b L    lim  b L.� � Ÿ Ÿ � � Ê � � Ê œ% % %n n n n nk k
n Ä _

110. Let . We have f continuous at L there exists  so that x L f(x) f(L) . Also, a L there% $ $ %� ! Ê � � Ê � � Ä Êk k k k n

 exists N so that for n N a L . Thus for n N,  f(a ) f(L)   f(a )  f(L).� � � � � � Ê Äk k k kn n n$ %

111. a a       3n 3n 4n 4 3n 6n n 2n 1 n
3(n 1) 1
(n 1) 1 n 1 n n 1

3n 1 3n 4 3n 1
�

� �
� � � �# �

� � � # #  Ê � Ê � Ê � � � � � � �

  4 2; the steps are reversible so the sequence is nondecreasing; 3  3n 1 3n 3Ê � � Ê � � �3n
n 1
�"
�

  1 3; the steps are reversible so the sequence is bounded above by 3Ê �

112. a a       n 1 n
(2(n 1) 3)! (2n 3)! (2n 5)! (2n 3)! (2n 5)! (n 2)!
((n 1) 1)! (n 1)! (n 2)! (n 1)! (2n 3)! (n 1)!�

� � � � � � �
� � � � � � �  Ê � Ê � Ê �

  (2n 5)(2n 4) n 2; the steps are reversible so the sequence is nondecreasing; the sequence is notÊ � � � �

 bounded since (2n 3)(2n 2) (n 2) can become as large as we please(2n 3)!
(n 1)!

�
� œ � � â �

113. a a       2 3 n 1 which is true for n 5; the steps aren 1 n
2 3 2 3 2 3
(n 1)! n! 2 3 n!

(n 1)!
� �

�Ÿ Ê Ÿ Ê Ÿ Ê Ÿ �  
n 1 n 1 n n n 1 n 1

n n

� � � �

†

 reversible so the sequence is decreasing after a , but it is not nondecreasing for all its terms;  a 6, a 18,& " #œ œ

 a 36, a 54, a 64.8  the sequence is bounded from above by 64.8$ % &œ œ œ œ Ê324
5

114. a a   2 2     ; the steps aren 1 n
2 2 2 2 2

n 1 n n n 1 n(n 1)� � # # � # # � #
" " " " "  Ê � �   � � Ê �   � Ê   �n 1 n n 1 n n 1� � �

 reversible so the sequence is nondecreasing; 2 2  the sequence is bounded from above� � Ÿ Ê2
n

"
#n

115. a 1  converges because   0 by Example 1; also it is a nondecreasing sequence bounded above by 1n œ � Ä" "
n n

116. a n  diverges because n   and   0 by Example 1, so the sequence is unboundedn œ � Ä _ Ä" "
n n

117. a 1  and 0 ; since   0 (by Example 1)    0, the sequence converges; also it isn
2 1

2 n nœ œ � � � Ä Ê Ä
n

n n n n
� " " " " "

# # #

 a nondecreasing sequence bounded above by 1

118. a ; the sequence converges to  by Theorem 5, #4n
2 1 2

3 3 3
n

œ œ � !
n

n n
� "ˆ ‰

119. a ( 1) 1  diverges because a 0 for n odd, while for n even a 2 1  converges to 2; itn n n
n n 1

n nœ � � œ œ �a b ˆ ‰ ˆ ‰� "

 diverges by definition of divergence

120. x max {cos 1 cos 2 cos 3 cos n} and x max {cos 1 cos 2 cos 3 cos (n 1)} x  with x 1n n 1 n nœ ß ß ßá ß œ ß ß ßá ß �   Ÿ�

 so the sequence is nondecreasing and bounded above by 1  the sequence converges.Ê

121. a a     n 1 2n 2n n 2n 2n  n 1 nn n 1
1 2n

n
2(n 1)

n 1
  Í   Í � � �   � � Í �  �

� "� �

�
# #

È ÈÈ È È ÈÈ ÈÈ È
 and 2 ; thus the sequence is nonincreasing and bounded below by 2  it converges1 2n

n
�ÈÈ   ÊÈ È
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122. a a     n 2n 1 n 2n  1 0 and 1; thus the sequence isn n 1
n 1 n 1

n n 1 n
(n 1)  Í   Í � �   � Í    �

� �� �"
�

# #

 nonincreasing and bounded below by 1  it convergesÊ

123. 4  so a a   4 4     1  and4 3 3 3 3 3 3 3
4 4 4 4 4 4 4

n n n n n 1
n n 1

n 1 n

n

� �
�

�" �
œ �   Í �   � Í   Í  ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰

 4 4; thus the sequence is nonincreasing and bounded below by 4  it converges�   Êˆ ‰3
4

n

124. a 1, a 2 3, a 2(2 3) 3 2 2 3, a 2 2 2 3 3 2 2 1 3," # $ %
# # $ $œ œ � œ � � œ � � " œ � � " � œ � �a b a b a ba b2 2

† †

 a 2 2 2 1 3 3 2 2 1 3, , a 2 2 1 3 2 3 2 3&
$ $ % % �" �" �" �œ � � � œ � � á œ � � œ � �c d a b a ba b n

n n n n 1
†

 2 (1 3) 3 2 3; a a   2 3 2 3  2 2   1 2œ � � œ � �   Í � �   � � Í �   � Í Ÿn 1 n n n 1 n n 1
n n 1

� � �
�

 so the sequence is nonincreasing but not bounded below and therefore diverges

125. Let 0 M 1 and let N be an integer greater than .  Then n N  n   n nM M� � � Ê � Ê � �M M
1 M 1 M� �

  n M nM  n M(n 1)  M.Ê � � Ê � � Ê �n
n 1�

126. Since M  is a least upper bound and M  is an upper bound, M M .  Since M  is a least upper bound and M" # " # # "Ÿ

 is an upper bound, M M .  We conclude that M M  so the least upper bound is unique.# " " #Ÿ œ

127. The sequence a 1  is the sequence , , , ,  .  This sequence is bounded above by ,n
( ) 3 3 3œ � á�"
# # # # # #

" "n

 but it clearly does not converge, by definition of convergence.

128. Let L be the limit of the convergent sequence {a }.  Then by definition of convergence, for  theren
%

#

 corresponds an N such that for all m and n, m N  a L  and n N  a L .  Now� Ê � � � Ê � �k k k km n
% %

# #

 a a a L L a a L L a  whenever m N and n N.k k k k k k k km n m n m n� œ � � � Ÿ � � � � � œ � �% %

# # %

129. Given an 0, by definition of convergence there corresponds an N such that for all n N,% � �

 L a  and L a .  Now L L L a a L L a a L 2 .k k k k k k k k k k k k" # # " # " # "� � � � � œ � � � Ÿ � � � � � œn n n n n n% % % % %

 L L 2  says that the difference between two fixed values is smaller than any positive number 2 .k k# "� � % %

 The only nonnegative number smaller than every positive number is 0, so L L 0 or L L .k k" # " #� œ œ

130. Let k(n) and i(n) be two order-preserving functions whose domains are the set of positive integers and whose
 ranges are a subset of the positive integers.  Consider the two subsequences a  and a , where a   L ,k n i n k nÐ Ñ Ð Ñ Ð Ñ "Ä

 a   L  and L L .  Thus a a L L 0. So there does not exist N such that for all m, n Ni n k n i nÐ Ñ Ð Ñ Ð Ñ# " # " #Ä Á � Ä � � �¸ ¸ k k
 a a . So by Exercise 128, the sequence a  is not convergent and hence diverges.Ê � � Ö ×k km n n%

131. a   L  given an 0 there corresponds an N  such that 2k N   a L .  Similarly,2k 2kÄ Í � � Ê � �% %" "c dk k
 a   L  2k 1 N   a L .  Let N max{N N }.  Then n N  a L  whether2k 1 2k 1 n� # � " #Ä Í � � Ê � � œ ß � Ê � �c d k kk k % %

 n is even or odd, and hence a   L.n Ä

132. Assume a   0.  This implies that given an 0 there corresponds an N such that n N  a 0n nÄ � � Ê � �% %k k
  a   a   a 0   a   0.  On the other hand, assume a   0.  This implies thatÊ � Ê � Ê � � Ê Ä Äk k k k k k k k k kk k k kn n n n n% % %

 given an 0 there corresponds an N such that for n N, a 0   a   a% % % %� � � � Ê � Ê �k k k k k kk k k kn n n

  a 0   a   0.Ê � � Ê Äk kn n%

133. (a) f(x) x a  f (x) 2x  x x   xœ � Ê œ Ê œ � Ê œ œ œ# w
� �

� � � �
# #

�
n 1 n n 1

x a 2x x a x a
x 2x 2x

x# # # #

n n n n n

n n n

n
a

xa b ˆ ‰
 (b) x 2, x 1.75, x 1.732142857, x 1.73205081, x 1.732050808; we are finding the positive" # $ % &œ œ œ œ œ

 number where x 3 0; that is, where x 3, x 0, or where x 3 .# #� œ œ � œ È
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
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134. x 1, x 1 cos (1) 1.540302306, x 1.540302306 cos (1 cos (1)) 1.570791601," # $œ œ � œ œ � � œ

 x 1.570791601 cos (1.570791601) 1.570796327  to 9 decimal places.  After a few steps, the% #œ � œ œ 1

 arc x  and line segment cos x  are nearly the same as the quarter circle.a b a bn 1 n 1� �

135-146.  Example CAS Commands:
 : (sequence functions may vary):Mathematica
 Clear[a, n]

 a[n_]; = n1 / n

 first25= Table[N[a[n]],{n, 1, 25}]
 Limit[a[n], n 8]Ä

Mathematica: (sequence functions may vary):
 Clear[a, n]

 a[n_]; = n1 / n

 first25= Table[N[a[n]],{n, 1, 25}]
 Limit[a[n], n 8]Ä

 The last command (Limit) will not always work in Mathematica. You could also explore the limit by enlarging your table
 to more than the first 25 values.
 If you know the limit (1 in the above example), to determine how far to go to have all further terms within 0.01 of the
 limit, do the following.
 Clear[minN, lim]
 lim= 1
 Do[{diff=Abs[a[n] lim], If[diff < .01, {minN= n, Abort[]}]}, {n, 2, 1000}]�

 minN
 For sequences that are given recursively, the following code is suggested. The portion of the command a[n_]:=a[n] stores
 the elements of the sequence and helps to streamline computation.
 Clear[a, n]
 a[1]= 1;

 a[n_]; = a[n]= a[n 1] (1/5)� � (n 1)�

 first25= Table[N[a[n]], {n, 1, 25}]
 The limit command does not work in this case, but the limit can be observed as 1.25.
 Clear[minN, lim]
 lim= 1.25
 Do[{diff=Abs[a[n] lim], If[diff < .01, {minN= n, Abort[]}]}, {n, 2, 1000}]�

 minN

10.2  INFINITE SERIES

 1. s    lim  s 3n n
a 1  r

(1  r)
2 1  

1  1  
2œ œ Ê œ œa b ˆ ‰ˆ ‰ˆ ‰ ˆ ‰�

�

�

� �

n
3

n

3 3

"

" "n Ä _

 2. s    lim  sn n
a 1  r

(1  r) 11
1  

1  1  
œ œ Ê œ œa b ˆ ‰ ˆ ‰ ˆ ‰ˆ ‰ˆ ‰ ˆ ‰�

�

�

� �
"n 9 9

100 100 100
n

100 100

"

" "n Ä _

 3. s    lim  sn n
a 1  r

(1  r) 3
1  
1  

2œ œ Ê œ œa b ˆ ‰ˆ ‰ ˆ ‰�
�

� �

� �
"n n

3

"

#

"

# #
n Ä _

 4. s , a geometric series where r 1  divergencen
1  ( 2)
1  ( 2)œ � Ê� �
� �

n k k
 5.   s    lim  s" " " " " " " " " " " "

� � # � � # # � � # # � # #(n  1)(n  ) n  1 n  3 3 4 n  1 n  n  n nœ � Ê œ � � � �á � � œ � Ê œˆ ‰ ˆ ‰ ˆ ‰
n Ä _
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 6.   s 5 55 5 5 5 5 5 5 5 5 5 5 5 5
n(n  1) n n  1 2 2 3 3 4 n  1 n n n  1 n  1n� � � � �œ � Ê œ � � � � � �á � � � � œ �ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰

   lim  s 5Ê œ
n Ä _ n

 7. 1 , the sum of this geometric series is � � � �á œ œ" " " " "
� � �4 16 64 51  1  

4ˆ ‰ ˆ ‰" "

4 4

 8. , the sum of this geometric series is " " " "
� #16 64 256 11  

� � �á œ
ˆ ‰̂ ‰

"

"

16

4

 9. , the sum of this geometric series is 7 7 7 7
4 16 64 31  
� � �á œ

ˆ ‰̂ ‰
7
4

4� "

10. 5 , the sum of this geometric series is 4� � � �á œ5 5 5 5
4 16 64 1  � �ˆ ‰"

4

11. (5 1) , is the sum of two geometric series; the sum is� � � � � � � �áˆ ‰ ˆ ‰ ˆ ‰5 5 5
3 4 9 8 7# #
" " "

 105 3 23
1  1  � �

"
# #ˆ ‰ ˆ ‰" "

#

� œ � œ
3

12. (5 1) , is the difference of two geometric series; the sum is� � � � � � � �áˆ ‰ ˆ ‰ ˆ ‰5 5 5
3 4 9 8 7# #
" " "

 105 3 17
1  1  � �

"
# #ˆ ‰ ˆ ‰" "

#

� œ � œ
3

13. (1 1) , is the sum of two geometric series; the sum is� � � � � � � �áˆ ‰ ˆ ‰ ˆ ‰1 1 1
5 4 25 8 1 5# #
" " "

 21 5 17
1  1  6 6� �

"ˆ ‰ ˆ ‰" "

#

� œ � œ
5

14. 2 2 1 ; the sum of this geometric series is 2� � � �á œ � � � �á œ4 8 16 2 4 8 10
5 25 125 5 25 125 31  

ˆ ‰ Š ‹"
� ˆ ‰2

5

15. Series is geometric with r 1 Converges to œ Ê � Ê œ2 2 1 5
5 5 31

¹ ¹
� 2

5

16. Series is geometric with r 3 3 1 Divergesœ � Ê � � Ê¹ ¹
17. Series is geometric with r 1 Converges to œ Ê � Ê œ1 1 1

8 8 71
¹ ¹ 1

8
1
8�

18. Series is geometric with r 1 Converges to œ � Ê � � Ê œ �2 2 2
3 3 51

¹ ¹ �

� �

2
3

2
3

ˆ ‰

19. 0.23   20. 0.234  œ œ œ œ œ œ! !ˆ ‰ ˆ ‰_ _

œ œn 0 n 0

23 23 234 234
100 10 99 1000 10 999

n n

1  1  

" "
� �

# $

Š ‹ Š ‹
ˆ ‰ Š ‹
23 234
100 1000

1000
" "

100

21. 0.7   22. 0.d  œ œ œ œ œ œ! !ˆ ‰ ˆ ‰_ _

œ œn 0 n 0

7 7 d d
10 10 9 10 10 9

n n

1  1  

" "

� �

Š ‹ Š ‹
Š ‹ Š ‹
7 d
10 10

10 10
" "

23. 0.06  œ œ œ œ! ˆ ‰ ˆ ‰ ˆ ‰_

œn 0

1 6 6
10 10 10 90 15

n

1  

" "

�

Š ‹
Š ‹
6

100

10
"

24. 1.414 1  1 1œ � œ � œ � œ! ˆ ‰_

œn 0

414 414 413
1000 10 999 999

n

1  

" "

�
$

Š ‹
Š ‹
414
1000

1000
"
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25. 1.24123  œ � œ � œ � œ � œ œ124 123 124 124 123 124 123
100 10 10 100 100 10 10 100 99,900 99,900 33,300

n

1  

123,999 41,333! ˆ ‰_

œn 0
& $ & #

"

� �

Š ‹
Š ‹
123
10

10

&

"

$

26. 3.142857 3 3 3œ � œ � œ � œ œ! ˆ ‰_

œn 0

142,857 142,857 3,142,854 116,402
10 10 10 1 999,999 37,037

n

1
' ' '

"

� �

Š ‹
Š ‹

142,857
10

10

'

"

'

27.     1 0 divergeslim lim
n n

n 1
n 10 1Ä_ Ä_� œ œ Á Ê

28.            1 0 divergeslim lim lim lim
n n n n

n n 1
n 2 n 3 n 5n 6 2n 5 2

n n 2n 1 2

Ä_ Ä_ Ä_ Ä_

�
� � � � �

� �a ba ba b œ œ œ œ Á Ê
2

2

29.   0 test inconclusivelim
n

1
n 4Ä_ � œ Ê

30.     0 test inconclusivelim lim
n n

n 1
n 3 2nÄ_ Ä_�2 œ œ Ê

31.   cos  cos 0 1 0 divergeslim
n

1
nÄ_
œ œ Á Ê

32.          1 0 divergeslim lim lim lim
n n n n

e e e 1
e n e 1 e 1Ä_ Ä_ Ä_ Ä_� �

n n n

n n nœ œ œ œ Á Ê

33.   ln  0 divergeslim
n

1
nÄ_
œ �_ Á Ê

34.   cos n  does not exist divergeslim
nÄ_

1 œ Ê

35. s 1 1   lim  sk k2 2 3 3 4 k  1 k k k  1 k  1œ � � � � � �á � � � � œ � Êˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰" " " " " " " " " "
� � � k Ä _

  lim  1 1, series converges to 1œ � œ
k Ä _

ˆ ‰"
�k  1

36. s 3   lim  sk k
3 3 3 3 3 3 3 3 3 3 3
1 4 4 9 9 16 k kk  1 k  1 k  1

œ � � � � � �á � � � � œ � Êˆ ‰ ˆ ‰ ˆ ‰ Š ‹ Š ‹a b a b a b� � �2 2 2 2 2
k Ä _

  lim  3 3, series converges to 3œ � œ
k Ä _

Š ‹3
k  1a b� 2

37. s ln 2 ln 1 ln 3 ln 2 ln 4 ln 3 ln k ln k 1 ln k 1 ln kk œ � � � � � �á � � � � � �Š ‹ Š ‹ Š ‹ Š ‹ Š ‹È È È ÈÈ È È È ÈÈ
 ln k 1 ln 1 ln k 1   lim  s  lim  ln k 1 ; series divergesœ � � œ � Ê œ � œ _È È ÈÈ

k kÄ _ Ä _
k

38. s tan 1 tan 0 tan 2 tan 1 tan 3 tan 2 tan k tan k 1 tan k 1 tan kk œ � � � � � �á � � � � � �a b a b a b a b a ba b a b
 tan k 1 tan 0 tan k 1   lim  sk  lim  tan k 1 does not exist; series divergesœ � � œ � Ê œ � œa b a b a b

k kÄ _ Ä _

39. s cos cos cos cos cos cosk
1 1 1 1 1 11 1 1 1 1 1

2 3 3 4 4 5œ � � � � � �áˆ ‰ ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰� � � � � �

         cos cos cos cos cos� � � � œ �ˆ ‰ ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰� � � � �
� � �# �#

1 1 1 1 11 1 1 1 1
k k 1 k 1 k 3 k

1

   lim  s  lim  cos , series converges to Ê œ � œ � œ
k kÄ _ Ä _

k 3 k 3 2 6 6
1 1’ “ˆ ‰1 1 1 1 1�

�#

40. s 5 4 6 5 7 6 k 3 k 2 k 4 k 3k œ � � � � � �á � � � � � � � �Š ‹ Š ‹ Š ‹ Š ‹ Š ‹È È ÈÈ È È È È È È
 k 4 2   lim  s  lim  k 4 2 ; series divergesœ � � Ê œ � � œ _È È’ “

k kÄ _ Ä _
k
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41.   s 14
(4n  3)(4n  1) 4n  3 4n  1 5 5 9 9 13 4k  7 4k  3k� � � � � �

" " " " " " " " "œ � Ê œ � � � � � �á � �ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰
 1    lim  s  lim  1 1� � œ � Ê œ � œˆ ‰ ˆ ‰" " " "

� � � �4k  3 4k  1 4k  1 4k  1k
k kÄ _ Ä _

42.   A(2n 1) B(2n 1) 6 (2A 2B)n (A B) 66 A B
(2n  1)(2n  1) 2n  1 2n  1 (2n  1)(2n  1)

A(2n  1)  B(2n  1)
� � � � � �

� � �œ � œ Ê � � � œ Ê � � � œ

  2A 6 A 3 and B 3.  Hence, 3 
2A 2B 0 A B 0
 A  B 6 A B 6

Ê Ê Ê œ Ê œ œ � œ �
� œ � œ
� œ � œœ œ ! !ˆ ‰k k

n 1 n 1œ œ

6
(2n  1)(2n  1) n  1 n  1� � # � # �

" "

 3 3 1   the sum isœ � � � � � �á � � � œ � ÊŠ ‹ ˆ ‰" " " " " " " " " "
# � � � # � # �1 3 3 5 5 7 (k  1)  1 2k  1 k  1 k  1

   lim  3 1 3
k Ä _

ˆ ‰� œ"
# �k  1

43. 40n A B C D
(2n 1) (2n 1) (2n 1) (2n 1) (2n 1) (2n 1) (2n 1) (2n 1)

A(2n 1)(2n 1)   B(2n 1)   C(2n 1)(2n 1)   D(2n 1)
� � � � � � � �

� � � � � � � � �
# # # # # #

# # # #

œ � � � œ

  A(2n 1)(2n 1) B(2n 1) C(2n 1)(2n 1) D(2n 1) 40nÊ � � � � � � � � � œ# # # #

  A 8n 4n 2n 1 B 4n 4n 1 C 8n 4n 2n 1 D 4n 4n 1 40nÊ � � � � � � � � � � œ � � œa b a b a b a b$ # # $ # #

  (8A 8C)n (4A 4B 4C 4D)n ( 2A 4B 2C 4D)n ( A B C D) 40nÊ � � � � � � � � � � � � � � � œ$ #

    

               8A 8C  0              8A 8C  0
  4A 4B 4C 4D  0   A  B C  D  0

2A 4B 2C 4D 40 A 2
 A  B  C  D  0

Ê Ê

� œ � œ
� � � œ � � � œ

� � � � œ � �
� � � � œ

Ú ÚÝ ÝÝ ÝÛ ÛÝ ÝÝ ÝÜ Ü B C 2D 20 2B 2D 20
A  B C  D  0

    4B 20  B 5
 B  D  0

� � œ � œ
� � � � œ

Ê Ê œ Ê œ
� œœ

 and D 5    C 0 and A 0.  Hence,  
            A C 0
A 5 C 5 0

œ � Ê Ê œ œ
� œ

� � � � œœ ! ’ “k

n 1œ

40n
( n 1) (2n 1)# � �# #

 5 5œ � œ � � � � �á � � �!’ “ Š ‹k

n 1œ

" " " " " " " " " "
# � # � # # � � # � # �( n 1) ( n 1) 1 9 9 5 5 (2(k 1)  1) ( k 1) ( k 1)# # # # #

 5 1   the sum is  lim  5 1 5œ � Ê � œŠ ‹ Š ‹" "
� �(2k 1) (2k 1)# #n Ä _

44.   s 12n  1
n (n  1) n (n  1) 4 4 9 9 16 (k  1) k k (k  1)k

� " " " " " " " " " " "
� � � �# # # # # # # #œ � Ê œ � � � � � �á � � � �ˆ ‰ ˆ ‰ ˆ ‰ ’ “ ’ “

   lim  s  lim  1 1Ê œ � œ
k kÄ _ Ä _

k (k  1)’ “"
� #

45. s 1 1k 2 2 43 3 k  1 k k k  1 k  1
œ � � � � � �á � � � � œ �Š ‹ Š ‹ Š ‹ Š ‹ Š ‹" " " " " " " " " "

� � �È È È È È È È È È È
   lim  s  lim  1 1Ê œ � œ

k kÄ _ Ä _
k k  1

Š ‹"
�È

46. s  k œ � � � � � �á � � � � œ �ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰" " " " " " " " " " " "
# ## # # # # # # # # #"Î# "Î# "Î$ "Î$ "Î% ÎÐ � Ñ Î Î ÎÐ � Ñ ÎÐ � Ñ1 k 1 1 k 1 k 1 k 1 1 k 1

   lim  sÊ œ � œ �
k Ä _

k 1
" " "
# #

47. sk ln 3 ln ln 4 ln 3 ln 5 ln 4 ln (k  1) ln k ln (k  2) ln (k  1)œ � � � � � �á � � � �ˆ ‰ ˆ ‰ ˆ ‰ Š ‹ Š ‹" " " " " " " " " "
# � � �

    lim  sœ � � Ê œ �" " "
# � #ln ln (k  2) ln k

k Ä _

48. s tan (1) tan (2) tan (2) tan (3) tan (k 1) tan (k)k œ � � � �á � � �c d c d c d�" �" �" �" �" �"

 tan (k) tan (k 1) tan (1) tan (k 1)   lim  s tan (1)� � � œ � � Ê œ � œ � œ �c d�" �" �" �" �"
# #k Ä _

k 4 4
1 1 1 1

49. convergent geometric series with sum 2 2"

� �1  

2
2 1Š ‹
ÈÈ"

È2

œ œ �È

50. divergent geometric series with r 2 1 51. convergent geometric series with sum 1k k Èœ � œ
Š ‹
Š ‹
3
#

"

#
1  � �
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 Section 10.2 Infinite Series 581

52.  lim  ( 1) n 0  diverges 53.  lim  cos (n )  lim  ( 1) 0  diverges
n n nÄ _ Ä _ Ä _

� Á Ê œ � Á Ên 1 n�
1

54. cos (n ) ( 1)   convergent geometric series with sum 1 œ � Ê œn

1  

5
6

"

� Š ‹� "

5

55. convergent geometric series with sum "

� �1  

e
e 1Š ‹"

#e

œ
#

#

56.  lim  ln 0  diverges
n Ä _

"
3n œ �_ Á Ê

57. convergent geometric series with sum 22 20 18 2

1  9 9 9� Š ‹"

10

� œ � œ

58. convergent geometric series with sum "

� �1  

x
x  1Š ‹"x œ

59. difference of two geometric series with sum 3" "

� � # #1  1  

3 3Š ‹ Š ‹2
3 3

� œ � œ
"

60.  lim  1  lim  1 e 0  diverges
n nÄ _ Ä _

ˆ ‰ ˆ ‰� œ � œ Á Ê" �" �"
n n

n n

61.  lim   0  diverges 62.  lim    lim    lim  n   diverges
n n n nÄ _ Ä _ Ä _ Ä _

n! n n n n
1000 n! 1 nn

n
œ _ Á Ê œ � œ _ Ê†

†

â
#â

63. ; both  and  are geometric series, and both conve! ! ! ! ! ! !ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰_ _ _ _ _ _ _

œ œ œ œ œ œ œn 1 n 1 n 1 n 1 n 1 n 1 n 1

2 3 2 3 1 3 1 3
4 4 4 2 4 2 4

n n n nn n n n

n n n
� œ � œ � œ rge

 since r 1 and r 1, respectivley 1 and  3œ Ê � œ Ê � Ê œ œ œ œ Ê1 1 3 3 1 3
2 2 4 4 2 4

n n

1 1
¹ ¹ ¹ ¹ ! !ˆ ‰ ˆ ‰_ _

œ œn 1 n 1

1 3
2 4

1 3
2 4� �

 1 3 4 by Theorem 8, part (1)!_
œn 1

2 3
4

n n

n
� œ � œ

64.          1 0 diverges by n  term test for divergencelim lim lim
n n n

2 4 1
3 4 1

th
Ä_ Ä_ Ä_

�
�

�" �"

�" �"

n n

n n

2 1n

4 2n
3 3n n
4 4n

n

œ œ œ œ Á Ê
ˆ ‰ˆ ‰

65.  ln ln (n) ln (n 1)   s ln (1) ln (2) ln (2) ln (3) ln (3) ln (4)! !ˆ ‰ c d c d c d c d_ _

œ œn 1 n 1

n
n  1� œ � � Ê œ � � � � � �ák

 ln (k 1) ln (k) ln (k) ln (k 1) ln (k 1)   lim  s ,  diverges� � � � � � œ � � Ê œ �_ Êc d c d
k Ä _

k

66.  lim  a  lim  ln ln 0  diverges
n nÄ _ Ä _n

n
2n  1œ œ Á Êˆ ‰ ˆ ‰

� #
"

67. convergent geometric series with sum "
� �1    eˆ ‰e

1

œ 1

1

68. divergent geometric series with r 1k k œ ¸ �e 23.141
22.459

1

1e

69.  ( 1) x  ( x) ; a 1, r x; converges to  for x 1! ! k k_ _

œ œn 0 n 0
� œ � œ œ � œ �n n n " "

� � �1  ( x) 1  x

70.   ( 1) x  x ; a 1, r x ; converges to  for x 1! ! a b k k_ _

œ œn 0 n 0
� œ � œ œ � �n 2n n

1  x
# # "

� #
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71. a 3, r ; converges to  for 1 1 or 1 x 3œ œ œ � � � � � �x  1 3 6 x

1  3  x
� �"
# � #� Š ‹x  � "

#

72.    ; a , r ; converges to ! !ˆ ‰ ˆ ‰_ _

œ œn 0 n 0

( 1)
3  sin x 3  sin x 3  sin x

n n

1  

�
# � # � # �

" " �" " �"

�

n

œ œ œ
ˆ ‰

Š ‹
"

#

�"

�3  sin x

  for all x since  for all xœ œ Ÿ Ÿ3  sin x 3  sin x
2(4  sin x) 8  2 sin x 4 3  sin x

� � " " "
� � � #

ˆ ‰
73. a 1, r 2x; converges to  for 2x 1 or xœ œ � �" "

� #1  2x k k k k
74. a 1, r ; converges to  for 1 or x 1.œ œ � œ � �" "

� �x x   1 x1  

x 1
# # #

#

Š ‹�"

#x

¸ ¸ k k
75. a 1, r (x 1) ; converges to  for x 1 1 or 2 x 0œ œ � � œ � � � � �n

1  (x  1)   x
" "

� � # � k k
76. a 1, r ; converges to  for 1 or 1 x 5œ œ œ � � �3  x 2 3  x

1  x  1
� " �
# � #� Š ‹3  x�

#

¸ ¸

77. a 1, r sin x; converges to  for x (2k 1) , k an integerœ œ Á �"
� #1  sin x

1

78. a 1, r ln x; converges to  for ln x 1 or e x eœ œ � � �"
�

�"
1  ln x k k

79. (a)   (b)   (c)  ! ! !_ _ _

œ� œ œn 2 n 0 n 5

" " "
� � � � � �#(n 4)(n 5) (n 2)(n 3) (n 3)(n )

80. (a)   (b)   (c)  ! ! !_ _ _

œ� œ œn 1 n 3 n 20

5 5 5
(n 2)(n 3) (n 2)(n 1) (n 19)(n 18)� � � � � �

81. (a) one example is 1" " " "
# �
� � � �á œ œ4 8 16 1

Š ‹
Š ‹
"

#

"

#

 (b) one example is 3� � � � �á œ œ �3 3 3 3
4 8 16 1#

�

�

Š ‹
Š ‹

3
#

"

#

 (c) one example is 1  1 0.� � � � �á œ � œ" " " "
# �4 8 16 1

Š ‹
Š ‹
"

#

"

#

82. The series   k   is a geometric series whose sum is  k where k can be any positive or negative number.! ˆ ‰_

œn 0

1
2

n 1

1

�

�

Š ‹
Š ‹
k
#

"

#

œ

83. Let a b .  Then  a  b  1, while   (1) diverges.n n n n
n n a

bœ œ œ œ œ œˆ ‰ ˆ ‰! ! ! ! !Š ‹" "
# #

_ _ _ _ _

œ œ œ œ œn 1 n 1 n 1 n 1 n 1

n

n

84. Let a b .  Then  a  b  1, while  a b  AB.n n n n n n
n n n

4 3œ œ œ œ œ œ œ Áˆ ‰ ˆ ‰ ˆ ‰! ! ! ! !a b" " " "
# #

_ _ _ _ _

œ œ œ œ œn 1 n 1 n 1 n 1 n 1

85. Let a  and b .  Then A  a , B  b 1 and   1 .n n n n4 3 b B
n n na Aœ œ œ œ œ œ œ œ Áˆ ‰ ˆ ‰ ˆ ‰! ! ! !Š ‹" " " "

# #

_ _ _ _

œ œ œ œn 1 n 1 n 1 n 1

n

n

86. Yes:    diverges.  The reasoning:   a  converges  a   0        diverges by the! ! !Š ‹ Š ‹" " "
a a an n

n n n
Ê Ä Ê Ä _ Ê

 nth-Term Test.
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87. Since the sum of a finite number of terms is finite, adding or subtracting a finite number of terms from a series
 that diverges does not change the divergence of the series.

88. Let A a a a  and  lim  A A.  Assume  a b  converges to S.  Letn n n n nœ � �á � œ �" # n Ä _
! a b

 S (a b ) (a b ) (a b )  S (a a a ) (b b b )n n n n n nœ � � � �á � � Ê œ � �á � � � �á �" " # # " # " #

  b b b S A    lim  b b b S A   b  converges.  ThisÊ � �á � œ � Ê � �á � œ � Ê" # " #n n n n nn Ä _
a b !

 contradicts the assumption that  b  diverges; therefore,  a b  diverges.! ! a bn n n�

89. (a) 5  1 r  r ; 2 2 22 2 3 3 3
1 r 5 5 5 5�

#
œ Ê œ � Ê œ � � �áˆ ‰ ˆ ‰

 (b) 5  1 r  r ;  
Š ‹13

2

1 r 10 10 2 10 10 10
13 3 13 13 3 13 3 13 3

� # # #

# $
œ Ê œ � Ê œ � � � � �áˆ ‰ ˆ ‰ ˆ ‰

90. 1 e e 9  1 e   e   b ln� � �á œ œ Ê œ � Ê œ Ê œb 2b b b
1 e 9 9 9

8 8" "
� b

ˆ ‰
91. s 1 2r r 2r r 2r r 2r , n 0, 1, n

2n 2n 1œ � � � � � �á � � œ á# $ % & �

  s 1 r r r 2r 2r 2r 2r    lim  sÊ œ � � �á � � � � �á � Ê œ �n n
2n 2n 1

1 r 1 r
2ra b a b# % $ & � "

� �n Ä _ # #

 , if r 1 or r 1œ � �1 2r
1 r
�
�

#
# k k k k

92. L s� œ � œn
a ar

1 r 1 r 1 r
a 1 r

� � �
�a bn n

93. area 2 2 (1) 4 2 1 8 mœ � � � �á œ � � � �á œ œ# # #
# #

" "
# �

Š ‹ Š ‹È È2
4

1 "

#

94. (a) L 3, L 3 , L 3 , , L 3    lim  L  lim  3" # $
#

œ œ œ á œ Ê œ œ _ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰4 4 4 4
3 3 3 3n n

n 1 n 1� �

n nÄ _ Ä _

 (b) Using the fact that the area of an equilateral triangle of side length s is s , we see that A ,
È È3 3

4 4
2

" œ

 A A 3 , A A 3 4 ,# " $ #
" "

# #œ � œ � œ � œ � �Š ‹ Š ‹ˆ ‰ ˆ ‰a bÈ È È È È È È3 3 3 3 3 3 3
4 3 4 1 4 3 4 12 7

2 2
2

 A A 3 4 , A A 3 4 , . . . ,% $
" "œ � œ �a b a bŠ ‹ Š ‹ˆ ‰ ˆ ‰2 33 3

4 3 4 3
2 2

5 4
È È

3 4

 A  3 4  3 3 4 3 3  .n

n n n

k 2 k 2 k 2

œ � œ � œ �
È È È È3 3 3 3

4 4 3 4 9 4
k 2 kk 1 k 1 4

9
! ! !a b a bŠ ‹ˆ ‰ ˆ ‰È È Œ �
œ œ œ

� �$" "� �
2

k

k 1

�$

�

   lim   A  lim   3 3  3 3 3 3 1
n nÄ _ Ä _n

n

k 2

œ � œ � œ � œ �Œ � Œ �È È ÈŒ �! ˆ ‰ ˆ ‰È È È È3 3 3 3
4 4 4 20 4 5

4 1 3
9 1

œ

k

k 1

�$

�

1
36

4
9�

 Aœ œ
È3

4 5 5
8 8ˆ ‰ "

10.3  THE INTEGRAL TEST

 1. f x  is positive, continuous, and decreasing for x 1;  dx  lim    dx  lim   a b ’ “œ   œ œ �1 1 1 1
x x x x2 2 2

' '
1 1

b

1

b_

b bÄ _ Ä _

  lim   1 1  dx converges  convergesœ � � œ Ê Ê
b Ä _

ˆ ‰ !1 1 1
b x n

n 1

'
1

_

2 2

œ

_

 2. f x  is positive, continuous, and decreasing for x 1;  dx  lim    dx  lim   xa b ’ “œ   œ œ1 1 1 5
x x x 4

0.8
0.2 0.2 0.2

' '
1 1

b

1

b_

b bÄ _ Ä _

  lim   b  dx diverges  divergesœ � œ _ Ê Ê
b Ä _

ˆ ‰ !5 5 1 1
4 4 x n

0.8

n 1

'
1

_

0.2 0.2

œ

_
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 3. f x  is positive, continuous, and decreasing for x 1; dx  lim    dx  lim   tana b ’ “œ   œ œ1 1 1 1 x
x 4 x 4 x 4 2 2

1
2 2 2� � �

�' '
1 1

b

1

b_

b bÄ _ Ä _

  lim   tan tan tan dx converges  convergesœ � œ � Ê Ê
b Ä _

ˆ ‰ !1 b 1 1 1 1 1 1
2 2 2 2 4 2 2 x 4 n 4

1 1 1

n 1

� � �
� �

œ

_
1 '

1

_

2 2

 4. f x  is positive, continuous, and decreasing for x 1;  dx  lim    dx  lim   ln x 4a b ’ “œ   œ œ l � l1 1 1
x 4 x 4 x 4� � �

' '
1 1

b

1

b_

b bÄ _ Ä _

  lim   ln b 4 ln 5 dx diverges  divergesœ l � l � œ _ Ê Ê
b Ä _

a b !'
1

_

1 1
x 4 n 4

n 1
� �

œ

_

 5. f x e  is positive, continuous, and decreasing for x 1; e dx  lim   e  dx  lim   ea b ’ “œ   œ œ �� � � �2x 2x 2x 2x1
2

' '
1 1

b

1

b_

b bÄ _ Ä _

  lim   e dx converges e  convergesœ � � œ Ê Ê
b Ä _

ˆ ‰ !1 1 1
2e 2e 2e

2x 2n

n 1
2b 2 2

'
1

_

� �

œ

_

 6. f x  is positive, continuous, and decreasing for x 2; dx  lim    dx  lim   a b ’ “œ   œ œ �1 1 1 1
x ln x x ln x x ln x ln xa b a b a b2 2 2

' '
2 2

b

2

b_

b bÄ _ Ä _

  lim   dx converges  convergesœ � � œ Ê Ê
b Ä _

ˆ ‰ !1 1 1 1 1
ln b ln 2 ln 2 x ln x n ln n

n 2

'
2

_

a b a b2 2

œ

_

 7. f x  is positive and continuous for x 1, f x 0 for x 2, thus f is decreasing for x 3;a b a bœ   œ � �  x 4 x
x 4 x 42 2

2

2�
w �

�a b
 dx  lim    dx  lim   ln x 4  lim   ln b 4 ln 13 dx' ' '

3 3 3

b

3

b_ _

x x 1 1 1 x
x 4 x 4 2 2 2 x 4

2 2
2 2 2� � �œ œ � œ � � œ _ Ê

b b bÄ _ Ä _ Ä _
’ “a b a b a bˆ ‰

 diverges  diverges   divergesÊ Ê œ � �! ! !
n 3 n 1 n 3

n n 1 2 n
n 4 n 4 5 8 n 4

œ œ œ

_ _ _

� � �2 2 2

 8. f x  is positive and continuous for x 2, f x 0 for x e, thus f is decreasing for x 3;a b a bœ   œ � �  ln x 2 ln x
x x

2 2

2
w �

 dx  lim    dx  lim   2 ln x  lim   2 ln b 2 ln 3 dx' ' '
3 3 3

b

3

b_ _

ln x ln x ln x
x x x

2 2 2
œ œ œ � œ _ Ê

b b bÄ _ Ä _ Ä _
’ “a b a ba b a b

 diverges  diverges   divergesÊ Ê œ �! ! !
n 3 n 2 n 3

ln n ln n ln 4 ln n
n n 2 n

œ œ œ

_ _ _
2 2 2

 9. f x  is positive and continuous for x 1, f x 0 for x 6, thus f is decreasing for x 7;a b a bœ   œ � �  x
e 3e

x x 62

x 3 x 3Î Î
w � �a b

 dx  lim    dx  lim    lim   ' '
7 7

b

7

b_

x x 3x 18x 54 3b 18b 54 327
e e e e e e e

2 2 2 2

x 3 x 3 x 3 x 3 x 3 b 3 7 3Î Î Î Î Î Î Îœ œ � � � œ � œ
b b bÄ _ Ä _ Ä _

’ “ Š ‹� � �

  lim    lim   dx converges  convergesœ � œ � œ Ê Ê
b bÄ _ Ä _

Š ‹ ˆ ‰ !3 6b 18
e e e e e e e

327 54 327 327 x n

n 7

a b� � �

œ

_

b 3 7 3 b 3 7 3 7 3 x 3 n 3

2 2

Î Î Î Î Î Î Î
'

7

_

    convergesÊ œ � � � � � �! !
n 1

n 1 4 9 16 25 36 n
e e e e e ee e

n 7œ

_ _

œ

2 2

n 3 1 3 2 3 4 3 5 3 n 31 2Î Î Î Î Î Î

10. f x   is continuous for x 2, f is positive for x 4, and f x 0 for x 7, thus f isa b a bœ œ   � œ � �x 4 x 4 7 x
x 2x 1 x 1 x 1

� � �
� � � �

w
2 2 3a b a b

 decreasing for x 8; dx  lim    dx  dx  lim    dx  dx  œ � œ �' ' ' ' '
8 8 8 8 8

b b b b_

x 4 x 1 3 1 3
x 1 x 1 x 1 x 1x 1
� �
� � � ��a b a b a b a b2 2 2 2

b bÄ _ Ä _
” • ” •

  lim   ln x 1  lim   ln b 1 ln 7 dx divergesœ l � l � œ l � l � � � œ _ Ê
b bÄ _ Ä _

’ “ ˆ ‰3 3 3 x 4
x 1 b 1 7 x 1� �

�
�8

b

8
' _

a b2

  diverges  2 0   divergesÊ Ê œ � � � � � � �! ! !
n 8 n 2 n 8

n 4 n 4 1 1 2 3 n 4
n 2n 1 n 2n 1 4 16 25 36 n 2n 1

œ œ œ

_ _ _
� � �

� � � � � �2 2 2

11. converges; a geometric series with r 1 12. converges; a geometric series with r 1œ � œ �" "
10 e

13. diverges; by the nth-Term Test for Divergence,  lim   1 0
n Ä _

n
n 1� œ Á
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14. diverges by the Integral Test;  dx 5 ln (n 1) 5 ln 2  dx  ' '
1 1

n
5 5

x 1 x 1� �œ � � Ê Ä _
_

15. diverges;  3  , which is a divergent p-series (p )! !_ _

œ œn 1 n 1

3
n nÈ Èœ œ" "

#

16. converges;   2  , which is a convergent p-series (p )! !_ _

œ œn 1 n 1

� "
#

2 3
n n nÈ œ � œ

$Î#

17. converges; a geometric series with r 1œ �"
8

18. diverges;   8     and since    diverges, 8     diverges! ! ! !_ _ _ _

œ œ œ œn 1 n 1 n 1 n 1

� "8 1 1
n n n nœ � �

19. diverges by the Integral Test:   dx ln n ln 2    dx  ' '
2 2

n
ln x ln x

x xœ � Ê Ä _"
#

#a b _

20. diverges by the Integral Test:   dx;   te  dt  lim  2te 4e
t ln x
dt

dx e  dt

' '
2 ln 2

_ _

ln x
x

dx
x
t

t 2 t 2 t 2È
Ô ×
Õ Ø � ‘œ

œ

œ

Ä œ �Î Î Î

b Ä _

b

ln 2

  lim  2e (b 2) 2e (ln 2 2)œ � � � œ _
b Ä _

� ‘b 2 ln 2 2Î Ð ÑÎ

21. converges; a geometric series with r 1œ �2
3

22. diverges;  lim    lim    lim  0
n n nÄ _ Ä _ Ä _

5 5  ln 5 ln 5 5
4 3 4  ln 4 ln 4 4

nn n

n n� œ œ œ _ Áˆ ‰ ˆ ‰
23. diverges;   2   , which diverges by the Integral Test! !_ _

œ œn 0 n 0

� "
� �

2
n 1 n 1œ �

24. diverges by the Integral Test:   ln (2n 1)   as n  '
1

n
dx

2x 1� #
"œ � Ä _ Ä _

25. diverges;  lim  a  lim    lim   0
n n nÄ _ Ä _ Ä _n

2 2  ln 2
n 1 1œ œ œ _ Á

n n

�

26. diverges by the Integral Test:  ; ln n 1 ln 2  as n
u x

du
' '

1 2

n n 1
dx du

x x 1 dx
x

uÈ Èˆ ‰ È� – —È ˆ ‰Èœ � "

œ
Ä œ � � Ä _ Ä _

È �

27. diverges;  lim    lim    lim   0
n n nÄ _ Ä _ Ä _

È ÈŠ ‹
Š ‹

n n
ln n œ œ œ _ Á

"

"

2 n

n

È

#

28. diverges;  lim  a  lim  1 e 0
n nÄ _ Ä _n n

n
œ � œ Áˆ ‰"

29. diverges; a geometric series with r 1.44 1œ ¸ �"
#ln 

30. converges; a geometric series with r 0.91 1œ ¸ �"
ln 3

31. converges by the Integral Test:   dx;    du
u ln x

du  dx
' '

3 ln 3

_ _Š ‹
È È

"

x

(ln x) (ln x) 1
x

u u 1# #� "
"

�
” •œ

œ
Ä
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  lim  sec  u  lim  sec b sec (ln 3)  lim  cos sec (ln 3)œ œ � œ �
b b bÄ _ Ä _ Ä _

c d c dk k � ‘ˆ ‰�" �" �" �" �""b
ln 3 b

 cos (0) sec (ln 3) sec (ln 3) 1.1439œ � œ � ¸�" �" �"
#
1

32. converges by the Integral Test:   dx   dx;    du
u ln x

du  dx
' ' '

1 1 0

_ _ _

" "
� � �"x 1 ln x 1 (ln x) 1 u

x
a b

Š ‹
# # #œ Ä

œ

œ

"

x ” •
  lim  tan u  lim  tan b tan 0 0œ œ � œ � œ

b bÄ _ Ä _
c d a b�" �" �"

# #

b

0
1 1

33. diverges by the nth-Term Test for divergence;  lim  n sin  lim    lim   1 0
n n x 0Ä _ Ä _ Ä

ˆ ‰"
n x

sin xœ œ œ Á
sin ˆ ‰
ˆ ‰

"

"

n

n

34. diverges by the nth-Term Test for divergence;  lim  n tan  lim    lim   
n n nÄ _ Ä _ Ä _

ˆ ‰"
n œ œ

tan  secˆ ‰
ˆ ‰

Š ‹ ˆ ‰
Š ‹

"

"

"

#

# "

"

#

n

n

n n

n

�

�

  lim  sec sec 0 1 0œ œ œ Á
n Ä _

# #"ˆ ‰
n

35. converges by the Integral Test:   dx;      du  lim  tan u
u e

du e  dx
' '

1 e

x

x

_ _

e
1 e 1 u

x

2x� �
" �"” • c dœ

œ
Ä œ# n Ä _

b
e

  lim  tan b tan e tan e 0.35œ � œ � ¸
b Ä _

a b�" �" �"
#
1

36. converges by the Integral Test:   dx;   du  du
u e

du e  dx
dx  du

' ' '
1 e e

_ _ _

2 2 2 2
1 e u(1 u) u u 1

x

x

u

� � �
"

x

Ô ×
Õ Ø ˆ ‰œ

œ

œ
Ä œ �

  lim  2 ln  lim  2 ln 2 ln 2 ln 1 2 ln 2 ln 0.63œ œ � œ � œ � ¸
b bÄ _ Ä _

� ‘ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰u b e e e
u 1 b 1 e 1 e 1 e 1� � � � �

b

e

37. converges by the Integral Test:   dx;   8u du 4u 4
u tan x
du

' '
1 4

2 2

4

_ Î

Î

Î

Î
8 tan x 3

1 x 4 16 4dx
1 x

�" # # #

#

#

�

�"

�

#” • c d Š ‹œ

œ
Ä œ œ � œ

1

1
1

1

1 1 1

38. diverges by the Integral Test:   dx;     lim   ln u  lim   (ln b ln 2)
u x 1
du 2x dx

' '
1 2

_ _

x du
x 1 4#� # # #

#
" " "” • � ‘œ �

œ
Ä œ œ � œ _

b bÄ _ Ä _

b

2

39. converges by the Integral Test:  sech x dx 2  lim   dx 2  lim  tan e' '
1 1

b b

1

_

œ œ
b bÄ _ Ä _

e
1 e

xx

x�
�"a b# c d

 2  lim  tan e tan e 2 tan e 0.71œ � œ � ¸
b Ä _

a b�" �" �"b
1

40. converges by the Integral Test:  sech x dx  lim  sech x dx  lim  tanh x  lim  (tanh b tanh 1)' '
1 1

b
b
1

_

# #œ œ œ �
b b bÄ _ Ä _ Ä _

c d
 1 tanh 1 0.76œ � ¸

41.  dx  lim  a ln x 2 ln x 4  lim  ln ln ;'
1

_ˆ ‰ ˆ ‰c dk k k ka 3
x 2 x 4 b 4 5

(b 2)
� � �

" �� œ � � � œ �
b bÄ _ Ä _

b
1

a a

  lim   a  lim  (b 2)   the series converges to ln  if a 1 and diverges to  if
, a 1

1,  a 1b bÄ _ Ä _

(b 2)
b 4 3

a 1 5�
�

�
a

œ � œ Ê œ _
_ �

œœ ˆ ‰
 a 1.  If a 1, the terms of the series eventually become negative and the Integral Test does not apply.  From� �

 that point on, however, the series behaves like a negative multiple of the harmonic series, and so it diverges.

42.  dx  lim  ln  lim  ln ln ;  lim   '
3

b

3

_ˆ ‰ ˆ ‰’ “¹ ¹" � � �"
� � � � �x 1 x 1 (x 1) (b 1) 4 (b 1)

2a x 1 b 1 2 b� œ œ �
b b bÄ _ Ä _ Ä _

2a 2a 2a 2a

  lim     the series converges to ln ln 2 if a  and diverges to  if
1,  a

, a
œ œ Ê œ œ _

œ

_ �b Ä _

" "
# � # #

"
#
"
#

a(b 1)
4

2a 1� � ˆ ‰
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 if a .  If a , the terms of the series eventually become negative and the Integral Test does not apply.� �" "
# #

 From that point  on, however, the series behaves like a negative multiple of the harmonic series, and so it diverges.

43. (a)      

 (b) There are (13)(365)(24)(60)(60) 10  seconds in 13 billion years; by part (a) s 1 ln n wherea b* n Ÿ �

 n (13)(365)(24)(60)(60) 10   s 1 ln (13)(365)(24)(60)(60) 10œ Ê Ÿ �a b a ba b* *
n

 1 ln (13) ln (365) ln (24) 2 ln (60) 9 ln (10) 41.55œ � � � � � ¸

44. No, because     and   diverges! ! !_ _ _

œ œ œn 1 n 1 n 1

" " " "
nx x n nœ

45. Yes.  If   a  is a divergent series of positive numbers, then   a   also diverges and a .! ! !ˆ ‰ ˆ ‰_ _

œ œn 1 n 1
n n n

a a"
# # #

_

n 1œ

œ �n n

 There is no “smallest" divergent series of positive numbers:  for any divergent series  a  of positive numbers!_
œn 1

n

   has smaller terms and still diverges.! ˆ ‰_

œn 1

an
#

46. No, if   is a convergent series of positive numbers, then 2 a  2a   also converges, and 2a a .! ! !_ _ _

œ œ œn 1 n 1 n 1
 a   n n n n nœ  

 There is no “largest" convergent series of positive numbers.

47. (a) Both integrals can represent the area under the curve f x , and the sum s  can be considered ana b œ 1
x 1 50È �

 approximation of either integral using rectangles with x 1. The sum s  is an overestimate of the? œ œ50
1

n 1
!50

n 1œ

 È �

 integral  dx. The sum s  represents a left-hand sum (that is, the we are choosing the left-hand endpoint of'
1

51
1

x 1 50È �

 each subinterval for c ) and because f is a decreasing function, the value of f is a maximum at the left-hand endpoint ofi

 each sub interval. The area of each rectangle overestimates the true area, thus dx . In a similar'
1

51
1 1

x 1 n 1È È� �
� !50

n 1œ

 

 manner, s  underestimates the integral dx. In this case, the sum s  represents a right-hand sum and because50 50
1

x 1
'

0

50

È �

 f is a decreasing function, the value of f is aminimum at the right-hand endpoint of each subinterval. The area of each

 rectangle underestimates the true area, thus  dx. Evaluating the integrals we find dx!50

n 1œ

 1 1 1
n 1 x 1 x 1È È È� � �

� ' '
0 1

50 51

 2 x 1 2 52 2 2 11.6 and dx 2 x 1 2 51 2 1 12.3. Thus,œ � œ � ¸ œ � œ � ¸’ “ ’ “È ÈÈ ÈÈ È
1 0

51 50

0

50' 1
x 1È �

 11.6 12.3.� �!50

n 1œ

 1
n 1È �

 (b) s 1000 dx 2 x 1 2 n 1 2 2 1000 n 500 2 2 251414.2n

n
1

x 1

n 2
� Ê œ � œ � � � Ê � � � ¸'

1

1

1

1� �

È �
’ “È È È ÈŠ ‹

 n 251415.Ê  
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48. (a) Since we are using s  to estimate  , the error is given by . We can consider this sum as 30
1 1 1
n n nœ ! ! !30

n 1 n 1 n 31œ œ œ

_ _

   4 4 4 an estimate

 of the area under the curve f x  when x 30 using rectangles with x 1 and c  is the right-hand endpoint ofa b œ   œ1
x i4 ?

 each subinterval. Since f is a decreasing function, the value of f is a minimum at the right-hand endpoint of each

 subinterval, thus  dx dx 1.23 10 .! ’ “ Š ‹_

œn 31
 1 1 1 1 1 1
n x x 3x 3bb b b

b b

3 30
5

4 4 4 3 3 3� œ œ � œ � � ¸ ‚' '
30 30 30

_

Ä_ Ä_ Ä_

�lim lim lim a b
 Thus the error 1.23 10� ‚ Þ�5

 (b) We want S s 0.000001 dx 0.000001 dx dx� � Ê � Ê œ œ �n
1 1 1 1
x x x 3xb b

b b' ' '
n n n n

_ _

Ä_ Ä_
4 4 4 3lim lim ’ “

 0.000001 n 69.336 n 70.œ � � œ � Ê � ¸ Ê  lim
b

1 1 1 1000000
3b 3n 3n 3Ä_

ˆ ‰ É3 3 3
3

49. We want S s 0.01 dx 0.01 dx dx� � Ê � Ê œ œ � œ � �n
1 1 1 1 1 1
x x x 2x 2b 2nb b b

b b' ' '
n n n n

_ _

Ä_ Ä_ Ä_
3 3 3 2 2 2lim lim lim’ “ ˆ ‰

 0.01 n 50 7.071 n 8 S s 1.195œ � Ê � ¸ Ê   Ê ¸ œ ¸1 1
2n n82 3

È !8

n 1œ

 

50. We want S s 0.1 dx 0.1 dx tan� � Ê � Ê œn
1 1 1 x

x 4 x 4 2 2b b

b
1

b' '
n n n

_

� �Ä_ Ä_

�
2 2lim lim ’ “ˆ ‰

 tan tan tan 0.1 n 2tan 0.2 9.867 n 10 S sœ � œ � � Ê � � ¸ Ê   Ê ¸lim
b

1 b 1 n 1 n
2 2 2 2 4 2 2 2

1 1 1
10

Ä_

� � �ˆ ‰ ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰ 1 1

 0.57œ ¸!10

n 1œ

 1
n 42 �

51. S s 0.00001 dx 0.00001 dx dx� � Ê � Ê œ œ � œ � �n
1 1 1 10 10 10

x x x x b nb b b

b b' ' '
n n n n

_ _

Ä_ Ä_ Ä_
1.1 1.1 1.1 0.1 0.1 0.1lim lim lim’ “ ˆ ‰

 0.00001 n 1000000 n 10œ � Ê � Ê �10
n

10 60
0.1

52. S s 0.01 dx 0.01 dx dx� � Ê � Ê œ œ �n
1 1 1 1

x ln x x ln x x ln x 2 ln xb b

b b' ' '
n n n n

_ _

Ä_ Ä_a b a b a b a b3 3 3 2lim lim ’ “
 0.01 n e 1177.405 n 1178œ � � œ � Ê � ¸ Ê  lim

b

1 1 1
2 ln b 2 ln n 2 ln n

50

Ä_
Š ‹a b a b a b È

2 2 2

53. Let A  and B 2 a , where {a } is a nonincreasing sequence of positive terms converging ton k n k
k

2œ œ! !n n

k 1 k 1œ œ

 a  a bk

 0.  Note that {A } and {B } are nondecreasing sequences of positive terms.  Now,n n

 B 2a 4a 8a 2 a 2a 2a 2a 2a 2a 2a 2an
n

2œ � � �á � œ � � � � � � �á# % ) # % % ) ) ) )a bn a b a b
 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a� � �á � Ÿ � � � � � � � �áðóóóóóóóóóóóóóóñóóóóóóóóóóóóóóòˆ ‰ a b a ba b a b a b2 2 2n n n " # $ % & ' ( )

 2  termsn 1�

 2a 2a 2a 2A 2 a .  Therefore if  a  converges,� � �á � œ Ÿˆ ‰ ! !a b a b a b a b2 2 1 2 2 k kn 1 n 1 n n
� � �

_

œk 1
 

 then {B } is bounded above   2 a  converges.  Conversely,n Ê ! k
2a bk

 A a a a a a a a a a 2a 4a 2 a a B a 2 a .n n n
n k

2 2œ � � � � � � �á � � � � �á � œ � � �" # $ % & ' ( " # % " "a b a b !a b a bn k

_

œk 1
 

 Therefore, if  2 a   converges, then {A } is bounded above and hence converges.!_
œk 1

k
2 na bk

54. (a) a    2 a  2     , which divergesa b a ba b2 22  ln 2 2 n(ln 2) n(ln 2) ln n
n n

n nn n n nœ œ Ê œ œ" " " " "
# #† †

! ! !_ _ _

œ œ œn 2 n 2 n 2

     diverges.Ê !_
œn 2

"
n ln n
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 (b) a    2 a   2    , a geometric series thata b a b a b2 2
n n

2

n
n nnp np p 1 p 1nœ Ê œ œ œ" " " "

# # #
! ! ! ! ˆ ‰_ _ _ _

œ œ œ œn 1 n 1 n 1 n 1
†

� �

 converges if 1 or p 1, but diverges if p 1."
#p 1� � � Ÿ

55. (a) ;   u  du  lim   lim  b (ln 2)
u ln x
du

' '
2 ln 2

p
b

ln 2

_ _

�dx u
x(ln x) p 1 1 pdx

x

p 1 p 1
p

p 1” • ’ “ Š ‹ c dœ

œ
Ä œ œ �

b bÄ _ Ä _

� �

� � �
" � � � �

   the improper integral converges if p 1 and diverges if p 1.
(ln 2) , p 1

, p
œ Ê � �

�

_ � "
œ "

�p 1
� �p 1

 For p 1:   lim  ln (ln x)  lim  ln (ln b) ln (ln 2) , so the improper integral diverges ifœ œ œ � œ _'
2

b
2

_

dx
x ln x b bÄ _ Ä _

c d c d
 p 1.œ

 (b) Since the series and the integral converge or diverge together,    converges if and only if p 1.!_
œn 2

"
n(ln n)p �

56. (a) p 1  the series divergesœ Ê

 (b) p 1.01  the series convergesœ Ê

 (c)      ; p 1  the series diverges! !_ _

œ œn 2 n 2

" " "
n ln n 3 n(ln n)a b$ œ œ Ê

 (d) p 3  the series convergesœ Ê

57. (a) From Fig. 10.11(a) in the text with f(x)  and a , we have  dx 1œ œ Ÿ � � �á �" " " " " "
#x k x 3 nk '

1

n 1�

 1 f(x) dx  ln (n 1) 1 1 ln n  0 ln (n 1) ln nŸ � Ê � Ÿ � � �á � Ÿ � Ê Ÿ � �'
1

n
" " "
# 3 n

 1 ln n 1.  Therefore the sequence 1 ln n  is bounded above byŸ � � �á � � Ÿ � � �á � �ˆ ‰ ˜ ™ˆ ‰" " " " " "
# #3 n 3 n

 1 and below by 0.

 (b) From the graph in Fig. 10.11(b) with f(x) ,   dx ln (n 1) ln nœ � œ � �" " "
�x n 1 x

'
n

n 1�

  0 ln (n 1) ln n 1 ln (n 1) 1 ln n .Ê � � � � œ � � �á � � � � � � �á � �" " " " " " "
� # � #n 1 3 n 1 3 nc d ˆ ‰ ˆ ‰

 If we define a 1 ln n, then 0 a a   a a   {a } is a decreasing sequence ofn n 1 n n 1 n n3 nœ � œ � � � � Ê � Ê" " "
# � �

 nonnegative terms.

58. e e  for x 1, and e  dx  lim  e  lim  e e e  e  dx converges by� � � � �x x x b 1# #

Ÿ   œ � œ � � œ Ê' '
1 1

x 1 x
_ _

� � �

b bÄ _ Ä _
c d ˆ ‰b

"

 the Comparison Test for improper integrals   e 1  e  converges by the Integral Test.Ê œ �! !_ _

œ œn 0 n 1

� �n n# #

59. (a) s   1.97531986;   dx  lim x  dx  lim  lim  and10

10

n x 2 2b 242 242
1 x 1 1 13œ œ œ œ � œ � � œ! ’ “ ˆ ‰

n 1

b

11œ

" �
3 3 2

2' '
11 11

b_

b b bÄ _ Ä _ Ä _

�

   dx  lim x  dx  lim  lim' '
10 10

b_

1 x 1 1 1
x 2 2b 200 200

3
3 2

2
œ œ � œ � � œ

b b bÄ _ Ä _ Ä _
� ’ “ ˆ ‰�

b

10

 1.97531986 s 1.97531986 1.20166 s 1.20253Ê � � � � Ê � �1 1
242 200

 (b) s   1.202095; error 0.000435œ ¸ œ Ÿ œ!_ " � �

n 1œ
n 2 2

1.20166 1.20253 1.20253 1.20166
3

60. (a) s   1.082036583;   dx  lim x  dx  lim  lim  and10

10

n x 3 3b 3993 3993
1 x 1 1 14œ œ œ œ � œ � � œ! ’ “ ˆ ‰

n 1

b

11œ

" �
4 4 3

3' '
11 11

b_

b b bÄ _ Ä _ Ä _

�

   dx  lim x  dx  lim  lim' '
10 10

b_

1 x 1 1 1
x 3 3b 3000 3000

4
4 3

3
œ œ � œ � � œ

b b bÄ _ Ä _ Ä _
� ’ “ ˆ ‰�

b

10

 1.082036583 s 1.082036583 1.08229 s 1.08237Ê � � � � Ê � �1 1
3993 3000

 (b) s   1.08233; error 0.00004œ ¸ œ Ÿ œ!_ " � �

n 1œ
n 2 2

1.08229 1.08237 1.08237 1.08229
4
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10.4  COMPARISON TESTS

 1. Compare with    , which is a convergent p-series, since p 2 1. Both series have nonnegative terms for n 1. For!_
œn 1

"
n2 œ �  

 n 1, we have n n 30 .  Then by Comparison Test,    converges.  Ÿ � Ê  2 2 1 1 1
n n 30 n 302 2 2� �

!_
œn 1

 2. Compare with    , which is a convergent p-series, since p 3 1. Both series have nonnegative terms for n 1. For!_
œn 1

"
n3 œ �  

 n 1, we have n n 2 .  Then by Comparison Test,      Ÿ � Ê   Ê   Ê    4 4 1 1 n n 1 n n 1 n 1
n n 2 n n 2 n n 2 n 2 n 24 4 4 4 3 4 4 4� � � � �

� �!_
œn 1

 converges.

 3. Compare with    , which is a divergent p-series, since p 1. Both series have nonnegative terms for n 2. For!_
œn 2

" "
#Èn

œ Ÿ  

 n 2, we have n 1 n .  Then by Comparison Test,     diverges.  � Ÿ Ê  È È !1 1 1
n 1 n n 1È È È� �

_

œn 2

 4. Compare with    , which is a divergent p-series, since p 1 1. Both series have nonnegative terms for n 2. For!_
œn 2

"
n œ Ÿ  

 n 2, we have n n n .  Thus    diverges.  � Ÿ Ê   Ê   œ Ê    2 2 1 1 n n 1 n 2 n 1 n 2
n n n n n n n n n n n n n n2 2 2 2 2 2 2� � � � �

� �!_
œn 2

 5. Compare with    , which is a convergent p-series, since p 1. Both series have nonnegative terms for n 1.!_
œn 1

"
n

3
23 2Î œ �  

 For n 1, we have 0 cos n 1 .  Then by Comparison Test,     converges.  Ÿ Ÿ Ê Ÿ2 cos n 1 cos n
n n n

2 2

3 2 3 2 3 2Î Î Î
!_
œn 1

 6. Compare with    , which is a convergent geometric series, since r 1. Both series have nonnegative terms for! ¹ ¹_

œn 1

"
3 3

1
n l l œ �

 n 1. For n 1, we have n 3 3 .  Then by Comparison Test,     converges.    †   Ê Ÿn n 1 1 1
n 3 3 n 3† †n n n

!_
œn 1

 7. Compare with    . The series     is a convergent p-series, since p 1, and the series    ! ! !_ _ _

œ œ œn 1 n 1 n 1

È È5 5
n n n

1 3
23 2 3 2 3 2Î Î Îœ �

 5    converges by Theorem 8 part 3. Both series have nonnegative terms for n 1. For n 1, we haveœ    È !_
œn 1

1
n3 2Î

 n n 4n 4n n 4n n 4n 5n n 4n 5n 20 5 n 4 5.3 4 3 4 4 3 4 4 4 4 3 4 4 n 4n
n 4Ÿ Ê Ÿ Ê � Ÿ � œ Ê � Ÿ � œ � Ê Ÿa b 4 3

4
�
�

 5   Then by Comparison Test,     converges.Ê Ÿ Ê Ÿ Ê Ÿ œn n 4
n 4 n 4 n n 4 n n 4

n 4 5 n 4 5 n 45
n

3

4 4 3 4 3 43 2
a b È�
� � � �

� � �É ÉÉ !
Î

_

œn 1

 8. Compare with    , which is a divergent p-series, since p 1. Both series have nonnegative terms for n 1. For!_
œn 1

" "
#Èn

œ Ÿ  

 n 1, we have n 1 2 n 2 2 n 1 3 n 2 n 1 3n 3 2 n n n 3    Ê   Ê �   Ê �     Ê �  È È È È Èˆ ‰
 n 2 n n n n 3 1Ê � �   � Ê   Ê   Ê   Ê  2 2 n n 2 n 1 n 1 n 1

n 3 n 3 n n 3 n n 3 n
n 2 n 1 1 1 1È Ê Éˆ ‰ È ˆ ‰ ˆ ‰È È È� � � �

� � � �

� �
2 2 2 2

2 2

 .  Then by Comparison Test,    diverges.Ê  
È ÈÈ È Èn 1 n 1

n 3 n 3
1

n
� �

� �2 2
!_
œn 1
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 9. Compare with    , which is a convergent p-series, since p 2 1. Both series have positive terms for n 1.   !_
œn 1

"

Ä_n bn

a
2

n

n
œ �   lim

           1 0. Then by Limit Comparison Teœ œ œ œ œ œ �lim lim lim lim lim
n n n n n1 n n n 3 3n 2n 6n 2 6

n 2n 3n 4n 6n 4 6

Ä_ Ä_ Ä_ Ä_ Ä_Î � � � �
� � �

n 2
n n 33 2

2 3 2 2

3 2 2
�

� � st,

     converges.!_
œn 1

n 2
n n 3

�
� �3 2

10. Compare with    , which is a divergent p-series, since p 1. Both series have positive terms for n 1.   !_
œn 1

" "
# Ä_Èn n

a
bœ Ÿ   lim n

n

           1 1 0. Then by Limit Comparisonœ œ œ œ œ œ œ �lim lim lim lim lim
n n n n n1 n

n n n n 2n 1 2
n 2 n 2 2n 2Ä_ Ä_ Ä_ Ä_ Ä_Î

� � �
� �

É
È
n 1

n 22 2 2

2 2

�

� É É É É È
 Test,     diverges.! É_

œn 1

n 1
n 2
�
�2

11. Compare with    , which is a divergent p-series, since p 1 1. Both series have positive terms for n 2.   !_
œn 2

"

Ä_n bn

aœ Ÿ   lim n

n

           1 0. Then by Limit Compœ œ œ œ œ œ �lim lim lim lim lim
n n n n n1 n n n n 1 3n 2n 1 6n 2 6

n + n 3n 2n 6n 2 6

Ä_ Ä_ Ä_ Ä_ Ä_Î � � � � � �
� �

n n 1

n 1 n 12 3 2 2

3 2 2

a b
Š ‹a b

�

� �

arison

 Test,     diverges.!_
œn 2

n n 1
n 1 n 1

a ba ba b�
� �2

12. Compare with    , which is a convergent  geometric series, since r 1. Both series have positive terms for! ¹ ¹_

œn 1

"
2 2

1
n l l œ �

 n 1.          1 0. Then by Limit Comparison Test,    conver  œ œ œ œ �lim lim lim lim
n n n n

a
b 1 2 3 4 4 ln 4 3 4

4 4 ln 4 2

Ä_ Ä_ Ä_ Ä_Î � �
n

n

2n

3 4n
n n n n

n n n
� !_

œn 1
ges.

13. Compare with    , which is a divergent p-series, since p 1. Both series have positive terms for n 1.   !_
œn 1

"

Ä_Èn
1
2 bn

aœ Ÿ   lim n

n

        . Then by Limit Comparison Test,     diverges.œ œ œ œ _lim lim lim
n n n1 n n 4

5 5 5
4 4

n

Ä_ Ä_ Ä_Î †

5n

n 4n n n

n n

È
†È Èˆ ‰ !_

œn 1

14. Compare with    , which is a convergent  geometric series, since r 1. Both series have positive terms for! ˆ ‰ ¹ ¹_

œn 1

2 2
5 5

n
l l œ �

 n 1.        exp  ln exp  n ln  œ œ œ œlim lim lim lim lim
n n n n n

a
b 10n 8 10n 8 10n 82 5

10n 15 10n 15 10n 15n n

Ä_ Ä_ Ä_ Ä_ Ä_Î
� � �
� � �

n

n

2n 3
5n 4

n

n

ˆ ‰
a b
�

� ˆ ‰ ˆ ‰ ˆ ‰
 exp  exp  exp  exp  œ œ œ œlim lim lim lim

n n n n

ln
1 n 1 n 10n 15 10n 8 100n 230n 120

70n 70n

Ä_ Ä_ Ä_ Ä_Î � Î � � � �

�ˆ ‰ a ba b
10n 15 10 10
10n 8 10n 15 10n 8

2 2

2 2�

� � �

 exp  exp  e 0.  Then by Limit Comparison Test,    converges.œ œ œ �lim lim
n n

140n 140 2n 3
200n 230 200 5n 4

7 10 n

Ä_ Ä_� �
Î �! ˆ ‰_

œn 1

15. Compare with    , which is a divergent p-series, since p 1 1. Both series have positive terms for n 2.   !_
œn 2

"

Ä_n bn

aœ Ÿ   lim n

n

         n  . Then by Limit Comparison Test,     diverges.œ œ œ œ œ _lim lim lim lim
n n n n1 n ln n 1 n ln n

n 1

Ä_ Ä_ Ä_ Ä_Î Î
"

"

ln n !_
œn 2

16. Compare with    , which is a convergent p-series, since p 2 1. Both series have positive terms for n 1.   !_
œn 1

"

Ä_n bn

a
2

n

n
œ �   lim

        1 0. Then by Limit Comparison Test,    ln 1  convergœ œ œ œ � �lim lim lim
n n n

ln 1

1 n n
1

1Ä_ Ä_ Ä_

�

Î

�

� �
"

Š ‹ Š ‹
Š ‹

"
�

"

"

n2

2 2

1 2
1

n2
n3

2
n3 n2

! ˆ ‰_

œn 1
es.

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.



592 Chapter 10 Infinite Sequences and Series

17. diverges by the Limit Comparison Test (part 1) when compared with   , a divergent p-series:!_
œn 1

"Èn

  lim    lim    lim  
n n nÄ _ Ä _ Ä _

Œ �
Š ‹

"

# � $

"

È È

È

n n

n

œ œ œ
ÈÈ Èn

2 n n n�
" "

#� #$ � Î
ˆ ‰

1 6

18. diverges by the Direct Comparison Test since n n n n n 0  , which is the nth� � � � � Ê �È 3
n n n�

"È
 term of the divergent series    or use Limit Comparison Test with b!_

œn 1

" "
n nn œ

19. converges by the Direct Comparison Test; , which is the nth term of a convergent geometric seriessin n
2

#

n nŸ "
#

20. converges by the Direct Comparison Test;  and the p-series   converges1 cos n 2
n n n

� "
# # #Ÿ !

21. diverges since  lim   0
n Ä _

2n 2
3n 1 3� œ Á

22. converges by the Limit Comparison Test (part 1) with , the nth term of a convergent p-series:"
n$Î#

  lim   lim  1
n nÄ _ Ä _

Š ‹
Š ‹

n
n n

n

�"
#

"
$Î#

È
œ œˆ ‰n

n
�"

23. converges by the Limit Comparison Test (part 1) with , the nth term of a convergent p-series:"
n#

  lim    lim    lim    lim   10
n n n nÄ _ Ä _ Ä _ Ä _

Š ‹
Š ‹
10n

n(n 1)(n 2)

n

�"

� �

"

#

œ œ œ œ10n n 20n 1 20
n 3n 2 2n 3 2

#

#

� �
� � �

24. converges by the Limit Comparison Test (part 1) with , the nth term of a convergent p-series:"
n#

  lim    lim    lim    lim   5
n n n nÄ _ Ä _ Ä _ Ä _

� �
Š ‹

5n 3n

n (n 2) n 5

n

$ �

# #� �

"

#

Š ‹
œ œ œ œ5n 3n 15n 3 30n

n 2n 5n 10 3n 4n 5 6n 4

$ #

$ # #
� �

� � � � � �

25. converges by the Direct Comparison Test; , the nth term of a convergent geometric seriesˆ ‰ ˆ ‰ ˆ ‰n n
3n 1 3n 3

n n n
�

"� œ

26. converges by the Limit Comparison Test (part 1) with , the nth term of a convergent p-series:"
n$Î#

  lim    lim   lim  1 1
n n nÄ _ Ä _ Ä _

Š ‹
Š ‹

"

$Î#

"
$ �

n

n 2È

œ œ � œÉ Én 2 2
n n
$

$ $

�

27. diverges by the Direct Comparison Test; n ln n  ln n ln ln n   and     diverges� Ê � Ê � �" " " "
n ln n ln (ln n) n

!_
œn 3

28. converges by the Limit Comparison Test (part 2) when compared with   , a convergent p-series:!_
œn 1

"
n#

  lim    lim    lim   2  lim   0
n n n nÄ _ Ä _ Ä _ Ä _

’ “
Š ‹
(ln n)

n

n

n

#

$

"

#

"

œ œ œ œ(ln n)
n 1 n

2(ln n) ln n# Š ‹

29. diverges by the Limit Comparison Test (part 3) with , the nth term of the divergent harmonic series:"
n

  lim    lim    lim    lim   
n n n nÄ _ Ä _ Ä _ Ä _

’ “ Š ‹
ˆ ‰ ˆ ‰

1
n ln n 2 n

n n

È È
" "

"

œ œ œ œ _
È Èn n
ln n 2
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30. converges by the Limit Comparison Test (part 2) with , the nth term of a convergent p-series:"
n&Î%

  lim    lim    lim   8  lim   8  lim   32  l
n n n n nÄ _ Ä _ Ä _ Ä _ Ä _

’ “
Š ‹ Š ‹ Š ‹

ˆ ‰ ˆ ‰(ln n)

n

n 4n 4n

2 ln n
n n

#

$Î#

" " "
&Î% $Î% $Î%

"

œ œ œ œ œ(ln n)
n n

ln n#

"Î% "Î% im   32 0 0
n Ä _

"
n"Î% œ œ†

31. diverges by the Limit Comparison Test (part 3) with , the nth term of the divergent harmonic series:"
n

  lim    lim    lim    lim  n
n n n nÄ _ Ä _ Ä _ Ä _

ˆ ‰ˆ ‰
"

�

" "

1 ln n

n n

œ œ œ œ _n
1 ln n�

"Š ‹

32. diverges by the Integral Test:   dx u du  lim  u  lim   b ln 3' '
2 ln 3

_ _

ln (x 1)
x 1 2

�
� #

" "# # #œ œ œ � œ _
b bÄ _ Ä _

� ‘ a bb

ln 3

33. converges by the Direct Comparison Test with , the nth term of a convergent p-series:  n 1 n for" #
n$Î# � �

 n 2  n n 1 n   n n 1 n    or use Limit Comparison Test with .  Ê � � Ê � � Ê �# # $ $Î## " "

�
a b È

n n n 1
1
n$Î# # #È

34. converges by the Direct Comparison Test with , the nth term of a convergent p-series:  n 1 n" # #
n$Î# � �

  n 1 nn   n    or use Limit Comparison Test with  .Ê � � Ê � Ê �# $Î# $Î#� " "
�

È n 1
n

n
n 1 n n

#

# $Î# $Î#È È

35. converges because        which is the sum of two convergent series:! ! !_ _ _

œ œ œn 1 n 1 n 1

"� " �"
#

n
n2 n2n n nœ �

    converges by the Direct Comparison Test since , and    is a convergent geometric series! !_ _

œ œn 1 n 1

" " " �"
# #n2 n 2n n n n�

36. converges by the Direct Comparison Test:      and , the sum of! ! ˆ ‰_ _

œ œn 1 n 1

n 2
n 2 n2 n n2 n n
� " " " " " "

#

n

n n n n# # # #œ � � Ÿ �

 the nth terms of a convergent geometric series and a convergent p-series

37. converges by the Direct Comparison Test:  , which is the nth term of a convergent geometric series" "
�3 1 3n 1 n 1� ��

38. diverges;  lim   lim  0
n nÄ _ Ä _

Š ‹ ˆ ‰3
3 3 3 3

n 1

n n

� �" " " "œ � œ Á

39. converges by Limit Comparison Test: compare with   , which is a convergent geometric series with r 1,! ˆ ‰_

œn 1

1 1
5 5

n
l l œ �

  lim   lim   lim  0.
n n nÄ _ Ä _ Ä _

Š ‹
a b
n 1 1

n 3n2 5n

n 2

�

�
†

Î
�
� �1 5

n 1 1
n 3n 2n 3œ œ œ

40. converges by Limit Comparison Test: compare with   , which is a convergent geometric  series with r 1,! ˆ ‰_

œn 1

3 1
4 5

n
l l œ �

  lim   lim   lim  1 0.
n n nÄ _ Ä _ Ä _

Š ‹
a b ˆ ‰ˆ ‰
2 3n n

3 4n n

n n
n n

n n

8
12

n

9
12

�

�

3 4
8 12 1
9 12 1

1

1Î
�
�

�

�
œ œ œ œ �

41. diverges  by Limit Comparison Test: compare with    , which is a divergent p-series,   lim   lim!_
œn 1

1 2
n 1 nn nÄ _ Ä _

Š ‹2 nn

n 2n n
�

†

Î œ � n
2n

  lim   lim  1 0.œ œ œ �
n nÄ _ Ä _

2 ln 2 1
2 ln 2

2 ln 2
2 ln 2

n

n 2

n 2

n
� a ba b

42. diverges by the definition of an infinite series:  ln  ln n ln n 1 , s ln 1 ln 2 ln 2 ln 3! !ˆ ‰ � ‘a b a b a b_ _

œ œn 1 n 1

n
n 1 k� œ � � œ � � �

 ln k 1 ln k ln k ln k 1 ln k 1  lim s� Þ Þ Þ � � � � � � œ � � Ê œ �_a b a b a ba b a b
k Ä _

k
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43. converges by Comparison Test with     which converges since       , and! ! ! ’ “_ _ _

œ œ œn 2 n 2 n 2

1 1 1 1
n n 1 n n 1 n 1 na b a b� � �œ �

 s 1 1  lim s 1; for n 2, n 2 ! 1k k
1 1 1 1 1 1 1 1
2 2 3 k 2 k 1 k 1 k kœ � � � � Þ Þ Þ � � � � œ � Ê œ   �  ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ a b� � � k Ä _

 n n 1 n 2 ! n n 1 n! n n 1Ê � �   � Ê   � Ê Ÿa ba b a b a b 1 1
n! n n 1a b�

44. converges by Limit Comparison Test: compare with   , which is a convergent p-series,   lim  !_
œn 1

1
n 1 n3 3

n 1
n 2

n Ä _

a b
a b
� x

� x

Î

  lim   lim   lim   lim  1 0œ œ œ œ œ �
n n n nÄ _ Ä _ Ä _ Ä _

n n 1
n 2 n 1 n n 1 n 3n 2 2n 3 2

n 2n 23 2

2
a ba ba b a b� x

� � � x � � �

45. diverges by the Limit Comparison Test (part 1) with , the nth term of the divergent harmonic series:"
n

  lim    lim   1
n x 0Ä _ Ä

ˆ ‰ˆ ‰sin "
"

n

n
œ œsin x

x

46. diverges by the Limit Comparison Test (part 1) with , the nth term of the divergent harmonic series:"
n

  lim    lim    lim   1 1 1
n n x 0Ä _ Ä _ Ä

ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰tan sin 

cos 

" "

" ""

n n

n nn
œ œ œ œŠ ‹ ˆ ‰ ˆ ‰" "

cos x x
sin x

†

47. converges by the Direct Comparison Test:   and       is the product of atan n
n n n n

�"

1.1 1.1 1.1 1.1� œ
1 1

# #! !_ _

œ œn 1 n 1

1

#
"

 convergent p-series and a nonzero constant

48. converges by the Direct Comparison Test:  sec n    and      is the�"
# #

"� Ê � œ1 1sec n
n n n n

�"
# #

1 3 1 3 1 3 1 3Þ Þ Þ Þ

ˆ ‰ ˆ ‰1 1! !_ _

œ œn 1 n 1

 product of a convergent p-series and a nonzero constant

49. converges by the Limit Comparison Test (part 1) with :   lim    lim  coth n  lim   " �
�n e e

e e
# �

�

n n nÄ _ Ä _ Ä _

Š ‹
Š ‹
coth n

n

n

#

"

#

œ œ
n n

n n

  lim   1œ œ
n Ä _

"�
�

e
1 e

�

�

2n

2n

50. converges by the Limit Comparison Test (part 1) with :   lim    lim  tanh n  lim   " �
�n e e

e e
# �

�

n n nÄ _ Ä _ Ä _

Š ‹
Š ‹
tanh n

n

n

#

"

#

œ œ
n n

n n

  lim   1œ œ
n Ä _

"�
�

e
1 e

�

�

2n

2n

51. diverges by the Limit Comparison Test (part 1) with :  lim    lim   1.1 1
n nn nÄ _ Ä _

Š ‹
ˆ ‰

1
n nn

1
n

È
œ œÈn

52. converges by the Limit Comparison Test (part 1) with :   lim    lim  n 1"
n#

#

"

#
n nÄ _ Ä _

Š ‹
Š ‹

n n

n

n

n

È

œ œÈ

53. . The series converges by the Limit Comparison Test (part 1) with :" "
� � �á� �1 2 3 n n(n 1) n

2œ œ"ˆ ‰n(n 1)�

#

#

   lim    lim   lim   lim  2.
n n n nÄ _ Ä _ Ä _ Ä _

Š ‹
Š ‹

2
n n 1

n

a b�

"

#

œ œ œ œ2n 4n 4
n n 2n 1 2

#

# � �

54.   the series converges by the Direct Comparison Test"
� � �á� � �1 2 3 n n(n 1)(2n 1) n

6 6
# # # $œ œ Ÿ Ê"

n(n 1)(2n 1)
6

� �
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55. (a) If  lim   0, then there exists an integer N such that for all n N, 0 1  1 1
n Ä _

a a a
b b b

n n n

n n n
œ � � � Ê � � �¹ ¹

  a b .  Thus, if  b  converges, then  a  converges by the Direct Comparison Test.Ê �n n n n! !
 (b) If  lim   , then there exists an integer N such that for all n N, 1  a b .  Thus, if

n Ä _
a a
b b n n

n n

n n
œ _ � � Ê �

  b  diverges, then  a  diverges by the Direct Comparison Test.! !n n

56. Yes,    converges by the Direct Comparison Test because a!_
œn 1

a a
n n n
n n �

57.  lim     there exists an  integer N such that for all n N, 1  a b .  If  a  converges,
n Ä _

a a
b b n n n

n n

n n
œ _ Ê � � Ê � !

 then  b  converges by the Direct Comparison Test! n

58.  a  converges   lim  a 0  there exists an  integer N such that for all n N, 0 a 1  a a! n n n nnÊ œ Ê � Ÿ � Ê �
n Ä _

#

   a  converges by the Direct Comparison TestÊ ! #
n

59. Since a 0 and  lim  a 0, by n  term test for divergence,  a  diverges.n n n
th� œ _ Á

n Ä _
!

60. Since a 0 and  lim  n a 0, compare a  with  , which is a convergent p-series;  lim   n n n
2

n 1 n
a� † œ

n nÄ _ Ä _
a b ! ! "

Î#

n
2

  lim  n a 0 a  converges by Limit Comparison Testœ † œ Ê
n Ä _

a b !2
n n

61. Let q  and p 1. If q 0, then      , which is a convergent p-series. If q 0, compare with�_ � � _ � œ œ Á! !_ _

œ œn 2 n 2

a bln n
n n

1
q

p p

    where 1 r p, then   lim    lim  , and p r 0. If q 0 q 0 and  lim  !_
œn 2

1
n 1 n n n

ln n ln n
r r p r p r

ln n q

np
q q

� � œ � � � Ê � �
n n nÄ _ Ä _ Ä _

a b

Î
a b a b

� �

  lim  0. If q 0,  lim   lim   lim  . If q 1 0 1 q 0œ œ � œ œ � Ÿ Ê �  
n n n nÄ _ Ä _ Ä _ Ä _

1
ln n n

ln n q ln n
n p r n p r n

q ln na b a b a ba b ˆ ‰a b a b�

�
� � � �

�

�

q p r

q q 1

p r p r 1 p r

q 1 1
n

� �  and

  lim   lim  0, otherwise, we apply L'Hopital's Rule again.  lim  
n n nÄ _ Ä _ Ä _

q ln n
p r n

q
p r n ln n

q q 1 ln na ba b a b a b a ba b ˆ ‰q 1

p r 1 qp r

q 2 1
n

�

� �

�

�

� �

�
œ œ a bp r n� 2 p r 1� �

   lim  . If q 2 0 2 q 0 and   lim   lim  0; otœ � Ÿ Ê �   œ œ
n n nÄ _ Ä _ Ä _

q q 1 ln n q q 1 ln n q q 1
p r n p r n p r n ln n

a ba b a ba b a ba b a b a b a b� � �

� � �

q 2 q 2

2 2 2 2 qp r p r p r

� �

� � �

�

herwise, we

 apply L'Hopital's Rule again. Since q is finite, there is a positive integer k such that q k 0 k q 0. Thus, after k� Ÿ Ê �  

 applications of L'Hopital's Rule we obtain  lim    lim  0
n nÄ _ Ä _

q q 1 q k 1 ln n q q 1 q k 1
p r n p r n ln n

a b a ba b a b a ba b a b a b� â � � � â � �

� �

q k

k k k qp r p r

�

� �

�

œ œ . Since the limit is

 0 in every case, by Limit Comparison Test, the series  converges.!
n 1

ln n
n

œ

_ a bq

p

62. Let q  and p 1. If q 0, then      , which is a divergent p-series. If q 0, compare with�_ � � _ Ÿ œ œ �! !_ _

œ œn 2 n 2

a bln n
n n

1
q

p p

   , which is a divergent p-series. Then   lim    lim  ln n . If q 0 q 0, compare with   ,! !a b_ _

œ œn 2 n 2

1 1
n 1 n n

q
p p r

ln n q

np

n nÄ _ Ä _

a b

Î œ œ _ � Ê � �

 where 0 p r 1.  lim    lim   lim   since r p 0. Apply L'Hopital's to obtain� � Ÿ œ œ � �
n n nÄ _ Ä _ Ä _

a bln n q

np
r p r

q r p
q1 n n

ln n n
ln nÎ

a b a b�

�

�

  lim   lim  . If q 1 0 q 1 0 and  lim  ,
n n nÄ _ Ä _ Ä _

a b a b a b a ba ba b a ba bˆ ‰ a br p n r p n r p n ln n
q ln n q ln n q
� � �

� � �

r p 1 r p r p

q 1 q 11
n

q 1
� � � �

� � � �

�

œ � � Ÿ Ê �   œ _

 otherwise, we apply L'Hopital's Rule again to obtain  lim   lim  
n nÄ _ Ä _

a b a ba ba ba b a ba ba bˆ ‰r p n r p n
q q 1 ln n q q 1

� �

� � � � � �

2 2r p 1 r p

q 2 1
n

� � �

� �

œ
ln n � �q 2 . If

 q 2 0 q 2 0 and  lim   lim  , otherwise, we� � Ÿ Ê �   œ œ _
n nÄ _ Ä _

a b a b a ba ba ba b a ba br p n r p n ln n
q q 1 ln n q q 1

� �

� � � � � �

2 2 q 2r p r p

q 2

� �

� �

�

 apply L'Hopital's Rule again. Since q is finite, there is a positive integer k such that q k 0 q k 0. Thus, after� � Ÿ Ê �  

 k applications of L'Hopital's Rule we obtain  lim    lim  
n nÄ _ Ä _

a b a b a ba ba b a ba b a ba br p n r p n ln n
q q 1 q k 1 ln n q q

� �

� � � â � � � � �

k k q kr p r p

q k

� �

� �

�

œ � â � � �1 q k 1a b œ _.
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 Since the limit is  if q 0 or if q 0 and p 1, by Limit comparison test, the series  diverges. Finally if q 0_ � � � �!
n 1

ln n
n

œ

_ a bq

p r�

 and p 1 then       . Compare with   , which is a divergent p-series. For n 3,  ln n 1œ œ    ! ! !_ _ _

œ œ œn 2 n 2 n 2

a b a bln n ln n
n n n

1
q q

p

  ln n 1  . Thus     diverges by Comparison Test. Thus, if q  and p 1,Ê   Ê   �_ � � _ Ÿa b !q ln n ln n
n n n

1a b a bq q_

œn 2

 the series  diverges.!
n 1

ln n
n

œ

_ a bq

p r�

63. Converges by Exercise 61 with q 3 and p 4.œ œ

64. Diverges by Exercise 62 with q  and p .œ œ1 1
2 2

65. Converges by Exercise 61 with q 1000 and p 1.001.œ œ

66. Diverges by Exercise 62 with q  and p 0.99.œ œ1
5

67. Converges by Exercise 61 with q 3 and p 1.1.œ � œ

68. Diverges by Exercise 62 with q  and p .œ � œ1 1
2 2

69. Example CAS commands:
 :Maple
 a := n -> 1./n^3/sin(n)^2;
 s := k -> sum( a(n), n=1..k );                                                    # (a)]
 limit( s(k), k=infinity );
 pts := [seq( [k,s(k)], k=1..100 )]:                                              # (b)
 plot( pts, style=point, title="#69(b) (Section 10.4)" );
 pts := [seq( [k,s(k)], k=1..200 )]:                                              # (c)
 plot( pts, style=point, title="#69(c) (Section 10.4)" );
 pts := [seq( [k,s(k)], k=1..400 )]:                                              # (d)
 plot( pts, style=point, title="#69(d) (Section 10.4)" );
 evalf( 355/113 );
 :Mathematica
 Clear[a, n, s, k, p]

 a[n_]:= 1 / ( n  Sin[n]  )3 2

 s[k_]= Sum[ a[n], {n, 1, k}]
 points[p_]:= Table[{k, N[s[k]]}, {k, 1, p}]
 points[100]
 ListPlot[points[100]]
 points[200]
 ListPlot[points[200]
 points[400]
 ListPlot[points[400], PlotRange All]Ä

 To investigate what is happening around k = 355, you could do the following.
 N[355/113]
 N[   355/113]1 �

 Sin[355]//N
 a[355]//N
 N[s[354]]
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 N[s[355]]
 N[s[356]]

70. (a) Let S , which is a convergent p-series. By Example 5 in Section 10.2,  converges to 1. By Theorem 8,œ ! !_ _

œ œn 1 n 1

1 1
n n n 12 a b�

  S         also converges.œ œ � � œ � �! ! ! ! ! ! Š ‹_ _ _ _ _ _

œ œ œ œ œ œn 1 n 1 n 1 n 1 n 1 n 1

1 1 1 1 1 1 1
n n n 1 n n n 1 n n 1 n n n 12 2 2a b a b a b a b� � � �

 (b) Since   converges to 1 (from Example 5 in Section 10.2), S 1  1! ! !Š ‹_ _ _

œ œ œn 1 n 1 n 1

1 1 1 1
n n 1 n n n 1 n n 1a b a b a b� � �œ � � œ �2 2

 (c) The new series is comparible to , so it will converge faster because its terms 0  faster than the terms of  ! !_ _

œ œn 1 n 1

1 1
n3 Ä n2 .

 (d) The series 1  gives a better approximation. Using Mathematica, 1 1.644933568, while� � œ! !1000 1000

n 1 n 1œ œ

1 1
n n 1 n n 12 2a b a b� �

     1.644933067. Note that 1.644934067. The error is 4.99 10  compared with 1 10 .!1000000

n 1œ

1
n 6

7 6
2

2
œ œ ‚ ‚1 � �

10.5  THE RATIO AND ROOT TESTS

 1. 0 for all n 1;         0 1  converges2 2 2 n! 2 2
n! n n! 2 n n!n n n n 1

n n n
2n

n !
2n
n!

n�   œ † œ œ � Êlim lim lim
Ä_ Ä_ Ä_

†
�" † � "

œ

_Œ � Š ‹ ˆ ‰ !�"

�"a b a b

 2. 0 for all n 1;          1  convn 2 n 3 3 n 3 1 1 n 2
3 3 3 n 2 3n 6 3 3 3n n n n n 1

� � � �

Ä_ Ä_ Ä_ Ä_† � �
œ

_

n n 2 n n

n 1 2
3n 1

3n

n
�   œ † œ œ œ � Êlim lim lim limŒ � ˆ ‰ ˆ ‰ ˆ ‰ !a b� �

�

� erges

 3. 0 for all n 1;         a b a b a ba b a b a bn 1 ! n n 1 ! n
n 1 n 2n n nn 1 !

n� † � �"

� �Ä_ Ä_ Ä_�
�

2 2

n 1 1 !

n 1 1 2

n 1 !

n 1 2

2 3
�   œ † œlim lim limŒ � Š ‹ Š ‹a ba b

a ba b
a b

a b

� �

� �

�

�

2n n 3n 4n 1
n 4n 4 2n 4n

2 2

2
� � �

� � �Ä_
œ   lim Š ‹

   1  divergesœ œ _ � Êlim
n

6n 4
2

n 1

n 1 !
n 1Ä_

�

œ

_
�

�
ˆ ‰ ! a ba b2

 4. 0 for all n 1;         2 2 2 n 3 2n
n 3 n 1 3 3 2 3n n n

n 1 n 1 n 1

n 1 n 1 n 1 n 1

2 n 1 1

n 1 3 n 1 1

2
n 3n 1

� � �

� � � �

� �

� †
� �

† �

† � † †Ä_ Ä_ Ä_

† †�   œ † œlim lim lim� � Š ‹ ˆ ‰a b

a b a b a b n 3 3 3n

2 2
� Ä_

œ œ �  1lim ˆ ‰
  convergesÊ !

n 1

2
n 3

œ

_

†

n 1

n 1

�

�

 5. 0 for all n 1;         n 4 n 4n 6n 4n 1
4 4 4 n 4nn n n

n 14 n 4 3 2

n 4 n 4 4

n 1 4

4n 1

n
4n

4

�   œ † œlim lim lim
Ä_ Ä_ Ä_

�
†

� � � �Œ � Š ‹ Š ‹a b�

� a b

   1  convergesœ � � � � œ � Êlim
n

1 1 3 1 1 1 n
4 n 2n n 4n 4 4

n 1Ä_ œ

_ˆ ‰ !
2 3 4 n

4

 6. 0 for all n 2;          3 3 3 ln n 3 ln n
ln n ln n 1 3 ln n 1n n n n

n 2 n 2
3 n 1 2

ln n 1

3n 2 n 2 1
ln n

3
n

� �

� �

�

� ��   œ † œ œlim lim lim lim
Ä_ Ä_ Ä_ Ä_

†
� �Œ � Š ‹ Š ‹ Š ‹a b

a b a b a b
n 1�

œ  lim
n

3n 3
nÄ_

�ˆ ‰
  3 1  divergesœ œ � Êlim

n

3 3
1 ln n

n 2Ä_ œ

_ˆ ‰ ! n 2�

 7. 0 for all n 1;       n n 2 ! n 1 n 3 n 2 !
n 3 n 1 n 3 3n n

2

2n 2 2n

n 1 n 1 2 !2

n 1 32 n 1

n n 2 !
n 32n

2a b a b a ba ba b� � � �
x � † x †Ä_ Ä_

�   œlim lim� � Š ‹a b a ba b

a b a b

a b

� � �

� x �

�

x

2 2 3 2

2n 3 2
† œn 3 n 5n 7n 3

n n 2 ! 9n 9nn

x � � �
� �Ä_a b   lim Š ‹

    1  convergesœ œ œ œ � Êlim lim lim
n n n

3n 15n 7 6n 15 6 1
27n 18n 54n 18 54 9 n 3

n 1

n n 2 !

Ä_ Ä_ Ä_

� � �
� � x

œ

_
�Š ‹ ˆ ‰ ˆ ‰ !2

2 2n

2a b
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 8. 0 for all n 1;        n 5
2n 3 ln n 1 2n 5 lnn n

n 1 5 5†
� � �Ä_ Ä_

� † †n
n 1 5n 1

2 n 1 3 ln n 1 1
n 5n

2n 3 ln n 1

n

a b a b a b aa b�   œlim limŒ � Š ‹a b
a b a ba b a b

a b a b

� †
�

� � � �

†

� �
b a b a b

n 2 n 5
2n 3 ln n 1

� †
� �† n

               œ † œ † œ †lim lim lim lim
n n n n

5 n 1 2n 3 ln n 1 ln n 1
n 2n 5 ln n 2 2n 5n ln n 2 4n 5

10n 25n 15 20n 25

Ä_ Ä_ Ä_ Ä_

� † � � �
� � � � �

� � �Š ‹ Š ‹ Š ‹ ˆ ‰a b a b a b a ba b a b a b2

2 lim
nÄ_

Š ‹1
n 1

1
n 2

�

�

      5    5 1 5 1  divergesœ † œ † œ † œ � Êlim lim lim
n n n

20 n 2 1 n 5
4 n 1 1 2n 3 ln n 1

n 2Ä_ Ä_ Ä_

� †
� � �

œ

_ˆ ‰ ˆ ‰ ˆ ‰ ! na b a b

 9. 0 for all n 1;        0 1  converges7 7 7
2n 5 2n 5 2n 5n n

7
2n 5

n 1
a b a b a bÈ

� � �Ä_ Ä_ �
œ

_

n n n
n

n

    œ œ � Êlim limÉ Š ‹ !

10. 0 for all n 1;        0 1  converges4 4 4 4
3n 3n 3nn n 3n

n 1

n n
n n n

n
na b a b a b    œ œ � Êlim lim

Ä_ Ä_ œ

_É ˆ ‰ !

11. 0 for all n 2;           1  divergesˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰É !4n 3 4n 3 4n 3 4 4 4n 3
3n 5 3n 5 3n 5 3 3 3n 5

n n n

n n n n 1

� � � �
� � � �Ä_ Ä_ Ä_ œ

_

    œ œ œ � Êlim lim limn

12. ln e 0 for all n 1;    ln e    ln e ln e 2 1’ “ Ê’ “ ’ “ˆ ‰ ˆ ‰ ˆ ‰ a b2 2 21 1 1
n n n

n 1 n 1 1 1 n

n n
2�     � œ � œ œ �

� � � Î

Ä_ Ä_
lim limn

 ln e  divergesÊ �!’ “ˆ ‰
n 1

2 1
n

n 1

œ

_ �

13. 0 for all n 1;        1  converges8 8 1 8
3 3 3 3n n

8
9

n 1
ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰

È
� � � �Ä_ Ä_ œ

_

1 1 1 1
n n n n

2n 2n 2 2n
n

n

    œ œ � Êlim limÉ Œ � !

14. sin 0 for all n 1;    sin    sin sin 0 0 1 sin  converges’ “ ’ “ ’ “Š ‹ Š ‹ Š ‹ Š ‹Ê a b !1 1 1 1
n n n n

n n n

n n n 1
È È È È    œ œ œ � Êlim lim

Ä_ Ä_ œ

_
n

15. 1 0 for all n 1;    1    1  e 1 1  convergesˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰É !�     � œ � œ � Ê �1 1 1 1
n n n n

n n n n

n n
1

n 1

2 2
n 2

lim lim
Ä_ Ä_

�

œ

_

16. 0 for all n 2;          0 1  converges" " "

Ä_ Ä_ Ä_ œ

_

n n nn n n

1 1
n n n

n 2
1 n 1 n 1 n

n
n n

1 n 1 n� � �Î �    œ œ œ � Êlim lim limÉ Š ‹ Š ‹ !È ÈÈ

17. converges by the Ratio Test:   lim   lim   lim  lim  1
n n n nÄ _ Ä _ Ä _ Ä _

a
a n

(n 1) 2
n

2n 1

n

2

n 1

n

2
�

�œ œ œ � œ
” •
” •

(n  1) 2

2n 1

n 2
n

�

�

#

È

È
�
# # #

" " "
È

È†
ˆ ‰ ˆ ‰È

� 1

18. converges by the Ratio Test:   lim    lim    lim    1 1
n n n

 limnÄ _ Ä _ Ä _
œ

Ä _
a
a e n n e e

(n 1) en 1

n

2

n 1 2

n
�

�œ œ � œ �
Š ‹
Š ‹
(n 1)2

en 1

n
en

�

�

#

� " " "#
†

ˆ ‰ ˆ ‰

19. diverges by the Ratio Test:   lim    lim    lim    lim   
n n n nÄ _ Ä _ Ä _ Ä _

a
a e n! e

(n )! e nn 1

n
n 1

n
�

�œ œ œ œ _
Š ‹
ˆ ‰
(n 1)!
en 1

n!
en

�

� �" �"
†

20. diverges by the Ratio Test:   lim    lim    lim    lim   
n n n nÄ _ Ä _ Ä _ Ä _

a
a 10 n! 10

(n )! 10 nn 1

n
n 1

n
�

�œ œ œ œ _
Š ‹
ˆ ‰
(n 1)!
10n 1

n!
10n

�

� �"
†

21. converges by the Ratio Test:   lim   lim   lim   lim  1
n n n nÄ _ Ä _ Ä _ Ä _

a
a 10 n n 1

(n ) 10n 1

n
n 1

n
�

"!

� "!œ œ œ �
Š ‹
Š ‹
(n 1)
10n 1

n
10n

�
"!

�

"!

�" " ""!
†

ˆ ‰ ˆ ‰
0 10œ �" 1
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22. diverges;  lim  a  lim   lim  1 e 0
n n nÄ _ Ä _ Ä _n

n 2 2
n n

n n
œ œ � œ Áˆ ‰ ˆ ‰� � �#

23. converges by the Direct Comparison Test:  2 ( 1) (3) which is the n  term of a convergent2 ( 1)
(1.25) 5 5

4 4n nn th� � n

n œ � � Ÿˆ ‰ ˆ ‰c d
 geometric series

24. converges; a geometric series with r 1k k ¸ ¸œ � �2
3

25. diverges;  lim  a  lim  1  lim  1 e 0.05 0
n n nÄ _ Ä _ Ä _n

3 3
n n

n n
œ � œ � œ ¸ Áˆ ‰ ˆ ‰� �$

26. diverges;  lim  a  lim  1  lim  1 e 0.72 0
n n nÄ _ Ä _ Ä _n 3n n

n
n

œ � œ � œ ¸ Áˆ ‰ � �"
�

�"Î$
Š ‹"3

27. converges by the Direct Comparison Test:   for n 2, the n  term of a convergent p-series.ln n n
n n n

th
$ $ #� œ  "

28. converges by the nth-Root Test:   lim  a  lim   lim   lim   lim  0
n n n n nÄ _ Ä _ Ä _ Ä _ Ä _

È Én n n

n

n 1 n

n 1 nn
(ln n)

n n 1
(ln n)

n
ln nœ œ œ œ œ �a ba b

Š ‹Î

Î

"

n 1

29. diverges by the Direct Comparison Test:   for n 2 or by the Limit Comparison Test (part 1)" " � " "
#n n n n

n 1� œ � �# #
ˆ ‰

 with ."n

30. converges by the nth-Root Test:   lim  a  lim   lim   lim  0 1
n n n nÄ _ Ä _ Ä _ Ä _

È Éˆ ‰ ˆ ‰ ˆ ‰ˆ ‰n n
n n n n n n n

n n 1 n
œ � œ � œ � œ �" " " " " "Î

# # #

31. diverges by the Direct Comparison Test:   for n 3ln n
n n�  "

32. converges by the Ratio Test:   lim    lim   1
n nÄ _ Ä _

a
a n ln (n)

(n 1) ln (n 1) 2n 1

n
n 1

n
�

�œ œ �� �
# #

"
†

33. converges by the Ratio Test:   lim    lim   0 1
n nÄ _ Ä _

a
a (n 1)! (n 1)(n 2)

(n 2)(n 3) n!n 1

n

� œ œ �� �
� � �†

34. converges by the Ratio Test:   lim    lim   1
n nÄ _ Ä _

a
a e n e

(n 1) en 1

n
n 1

n
�

$

� $œ œ �� "
†

35. converges by the Ratio Test:   lim    lim    lim   1
n n nÄ _ Ä _ Ä _

a
a 3! (n 1)! 3 (n 3)! 3(n 1) 3

(n 4)! 3! n! 3 n 4n 1

n
n 1

n
�

�œ œ œ ��
� � �

� "
†

36. converges by the Ratio Test:   lim   lim   lim  1
n n nÄ _ Ä _ Ä _

a
a 3 (n 1)! n2 (n 1)! n 3 n 1 3

(n 1)2 (n 2)! 3 n! n 1 2 n 2 2n 1

n

n 1

n 1 n

n
�

�

�œ œ œ �� �
� � �

� �
†

ˆ ‰ ˆ ‰ ˆ ‰
37. converges by the Ratio Test:   lim    lim    lim   0 1

n n nÄ _ Ä _ Ä _
a
a (2n 3)! n! (2n 3)(2n 2)

(n 1)! (2n 1)! nn 1

n

� œ œ œ �� �
� � �

�"
†

38. converges by the Ratio Test:   lim    lim    lim    lim   
n n n nÄ _ Ä _ Ä _ Ä _

a
a (n 1) n! n 1

(n 1)! n n nn 1

n
n 1

n
�

�œ œ œ�
� �

"
†

ˆ ‰ ˆ ‰n
n

n� "

  lim   1œ œ �
n Ä _

" "ˆ ‰1� "

n
n e

39. converges by the Root Test:   lim  a  lim   lim    lim   0 1
n n n nÄ _ Ä _ Ä _ Ä _

È Én n
n

n

n
n

(ln n) ln n ln n
n

œ œ œ œ �
È "
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40. converges by the Root Test:   lim  a  lim   lim   0 1
n n nÄ _ Ä _ Ä _

È Én n
n 2

n n

n
n

(ln n)
n

ln n  lim  ln n

 lim  n
œ œ œ œ �Î

ÈÈ È
È

n

n

Ä_

Ä_

  lim  n 1Š ‹È
n Ä _

n œ

41. converges by the Direct Comparison Test:  n! ln n ln n n
n(n 2)! n(n 1)(n 2) n(n 1)(n 2) (n 1)(n ) n� � � � � � �#

" "œ � œ � #

 which is the nth-term of a convergent p-series

42. diverges by the Ratio Test:   lim    lim    lim   1
n n nÄ _ Ä _ Ä _

a
a (n 1) 2 3 (n 1)

3 n 2 n 3 3n 1

n

n 1 n 3

n 1 n 3
�

� $

$ �œ œ œ �� � # #†
ˆ ‰

43. converges by the Ratio Test:   lim    lim    lim    lim   
n n n nÄ _ Ä _ Ä _ Ä _

a
a (2n 2)(2n 1)

n 1
2(n 1)

2n n 1

n
nn 1

n

2

2

2 2
� œ œ œ

� ‘a b� ‘ a b a b� ‘� x

� x

x �

x � �†

� �
� �

2n 1 1
4n 6n 2 42 œ � 1

44. converges by the Ratio Test:   lim    lim    lim  
n n nÄ _ Ä _ Ä _

a
a 3 2 2n 3 2 3 2n 3

2n 5 2 3 3 2 2n 5 2 6 4 2 3 3n 1

n

n 1

n 1 n

n n n
�

�

�œ œ †
a bˆ ‰ a ba b� �

� � � �
� � † � † � †

† ’ n

n n n
�

† � † � † �
6

3 6 9 3 2 2 6“
  lim   lim  1 1œ † œ † œ �

n nÄ _ Ä _
’ “ ’ “2n 5 2 6 4 2 3 3 6 2 2

2n 3 3 6 9 3 2 2 6 3 3
� † � † � † �
� † � † � † �

n n n

n n n

45. converges by the Ratio Test:   lim    lim   0 1
n nÄ _ Ä _

a
a a

an 1

n n

n n� œ œ �
ˆ ‰1 sin n�

46. converges by the Ratio Test:   lim    lim    lim   0 since the numerator
n n nÄ _ Ä _ Ä _

a
a a n

a tan nn 1

n n

n
�

�"

œ œ œ
Š ‹1 tan n

n
�

�"

"�

 approaches 1  while the denominator tends to � _1

#

47. diverges by the Ratio Test:   lim    lim    lim   1
n n nÄ _ Ä _ Ä _

a
a a 2n 5

a 3n 1 3n 1 2n 5

n n

n� �œ œ œ �
ˆ ‰3n 1�

�
� #

48. diverges;  a a   a  a   a  an 1 n n 1 n 1 n 1 n 2
n n n 1 n n 1 n 2

n 1 n 1 n n 1 n n 1� � � � �� � � �
� � �œ Ê œ Ê œˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰

  a a   a   a , which is a constant times theÊ œ â Ê œ Ê œn 1 n 1 n 1
n n 1 n 2 3

n 1 n n 1 n 1 n 1
a

� " � �� � # � �
� � "ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ "

 general term of the diverging harmonic series

49. converges by the Ratio Test:   lim    lim    lim   0 1
n n nÄ _ Ä _ Ä _

a
a a n

a 2n 1

n n

n
� œ œ œ �

Š ‹2
n

50. converges by the Ratio Test:   lim    lim    lim   1
n n nÄ _ Ä _ Ä _

a
a a n

a
n 1

n n

n
� œ œ œ �

Œ �Èn n
n# Èn "

#

51. converges by the Ratio Test:   lim    lim    lim    lim   0 1
n n n nÄ _ Ä _ Ä _ Ä _

a
a a n n

a ln nn 1

n n

n
� œ œ œ œ �

Š ‹1 ln n
n
�

"� "

52. 0 and a   a 0; ln n 10 for n e   n ln n n 10  1n ln n n ln n
n 10 n 10n
� " �
� # �"

"!� œ Ê � � � Ê � � � Ê �

  a  a a ; thus a a    lim  a 0, so the series diverges by the nth-Term TestÊ œ � �   Ê Án 1 n n n 1 n n
n ln n
n 10� �
� "
� # n Ä _

53. diverges by the nth-Term Test:  a , a , a , a , ," # $ %
" " " " " "œ œ œ œ œ œ á3 3 3 3 3 3É É É É ÉÊ ÊË2 2 23 36 !% %

 a    lim  a 1 because  is a subsequence of  whose limit is 1 by Table 8.1n nœ Ê œÉ É Éš › š ›n! n! n" " "
3 3 3n Ä _
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54. converges by the Direct Comparison Test:  a , a , a , a ," # $ %
" " " " " "
# # # # # #

# # ' ' #%$ %

œ œ œ œ œ œ áˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰Š ‹ Š ‹
  a  which is the nth-term of a convergent geometric seriesÊ œ �n

n! nˆ ‰ ˆ ‰" "
# #

55. converges by the Ratio Test:   lim    lim    lim   
n n nÄ _ Ä _ Ä _

a
a (2n  2)! 2 n! n! (2n

2 (n  1)! (n  1)! (2n)! 2(n  1)(n  1)n 1

n

n 1

n
�

�

œ œ� � � �
� †   )(2n  1)� # �

  lim   1œ œ �
n Ä _

n  
2n  1

� " "
� #

56. diverges by the Ratio Test:   lim    lim   
n nÄ _ Ä _

a
a (n  1)! (n  2)! (n  3)! (3n)!

(3n  3)! n! (n  1)! (n  2)!n 1

n

� œ � � �
� � � †

  lim    lim  3 3 3 3 27 1œ œ œ œ �
n nÄ _ Ä _

(3n  3)(3  2)(3n  1)
(n  1)(n  2)(n  3) n  n  3

3n  2 3n  1� � �
� � � � # �

� �ˆ ‰ ˆ ‰
† †

57. diverges by the Root Test:   lim  a  lim   lim   1
n n nÄ _ Ä _ Ä _

È Én n
n

nn
(n!)
n

n!
n´ œ œ _ �a b# #

58. converges by the Root Test:   lim   lim   lim    lim  
n n n nÄ _ Ä _ Ä _ Ä _

É É ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰n
n n

n
n

n n n
(n!) (n!)
n n

n! 2 3 n  1 n
n n n n n n# œ œ œ âa b " �

  lim  0 1Ÿ œ �
n Ä _

"
n

59. converges by the Root Test:   lim  a  lim   lim    lim   0 1
n n n nÄ _ Ä _ Ä _ Ä _

È Én n
n

n n nn
n n
2  ln 2œ œ œ œ �# # #

"

60. diverges by the Root Test:   lim  a  lim   lim   1
n n nÄ _ Ä _ Ä _

È Én n
n

nn
n n

4œ œ œ _ �a b# #

61. converges by the Ratio Test:   lim   lim   lim   
n n nÄ _ Ä _ Ä _

a
a 4 2 (n  1)! 1 3 (2n  1)

1 3 (2n  1)(2n  1) 4 2 n! 2nn 1

n
n 1 n 1

n n
�

� �œ œ† † †

† † †

â � �
� â �†

  
(4 )(n  1) 4

� " "
# �†

œ � 1

62. converges by the Ratio Test:  an
1 3 (2n  1) 1 2 3 4 (2n  1)(2n) (2n)!

(2 4 n) 3   1 (2 4 2n) 3   1 2 n! 3   1
œ œ œ† † † †

† †

â � â �
â# � â � �a b a b a b a bn n n n# #

   lim    lim   Ê œ
n nÄ _ Ä _

(2n  2)!
2 (n  1)! 3   1

2 n! 3   1 (2n  )(2n  2) 3   1
(2n)! 2 (n  1) 3   1

�

� �

� � " � �
� �c d a b a b a b a ba bn 1 n 1

n n n

n 1� �#

#

# # �†

  lim   1 1œ œ œ �
n Ä _

Š ‹4n   6n  2
4n   8n  4 3  3 3 3

1  3#

# �

�� � " "
� � �

�a ba b
n

n †

63. Ratio:   lim    lim    lim  1 1  no conclusion
n n nÄ _ Ä _ Ä _

a
a (n  1) 1 n  1

n n pn 1

n
p

p
� œ œ œ œ Ê"

� �†
ˆ ‰ p

 Root:   lim  a  lim   lim   1  no conclusion
n n nÄ _ Ä _ Ä _

È Én n
p pn pn n (1)n

œ œ œ œ Ê" " "ˆ ‰È

64. Ratio:   lim    lim    lim   lim    lim   
n n n n nÄ _ Ä _ Ä _ Ä _ Ä _

a
a (ln (n 1)) 1 ln (n 1) n

(ln n) ln n n
p pp

n 1

n
p

p
� œ œ œ œ" �"

� �† ’ “ Š ‹” •ˆ ‰ˆ ‰
"

"

�

n

n 1

 (1) 1  no conclusionœ œ Êp

 Root:   lim  a  lim  ; let f(n) (ln n) , then ln f(n)
n nÄ _ Ä _

È Én n
p pn (ln n) n  

1 n ln (ln n)œ œ œ œ" " ÎŠ ‹lim (ln n)nÄ_

1 nÎ

   lim  ln f(n)  lim    lim    lim   0   lim  (ln n)Ê œ œ œ œ Ê
n n n n nÄ _ Ä _ Ä _ Ä _ Ä _

ln (ln n)
n 1 n ln n

1 nˆ ‰"

n ln n " Î

  lim  e e 1; therefore  lim  a 1  no conclusionœ œ œ œ œ œ Ê
n nÄ _ Ä _

ln f n
n

 (1)
Ð Ñ ! " "Èn

p pŠ ‹ lim (ln n)nÄ_

1 nÎ

65. a  for every n and the series    converges by the Ratio Test since  lim   1n
n n 2
2 2 n

(n )Ÿ œ �n n n 1

n!_
œn 1

# #
�" "

n Ä _ � †

   a  converges by the Direct Comparison TestÊ !_
œn 1

n
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66. 0 for all n 1;             2 2 n! 2 2 4
n! n 1 n! n 1 n 1n n n n2

n n 2n 1 2n 1 n2 22 n 1 2

n 1 !

2n n2 2

n!

�   œ † œ œ œlim lim lim lim
Ä_ Ä_ Ä_ Ä_� † � �

†� � Š ‹ Š ‹ ˆ ‰a b

a b

�

�
� � �a b lim

n

2 4 ln 4
1Ä_

†ˆ ‰n

 1  divergesœ _ � Ê !
n 1

2
n!

œ

_
n2

10.6  ALTERNATING SERIES, ABSOLUTE AND CONDITIONAL CONVERGENCE

1. converges by the Alternating Convergence Test since: u 0 for all n 1; n 1 n 1 n n 1 nn
1

n
œ �     Ê �   Ê �  È È È

 u u ;    u     0.Ê Ÿ Ê Ÿ œ œ1 1 1
n 1 n nn 1 n n

n nÈ È È� �
Ä_ Ä_
lim lim

 2. converges absolutely  converges by the Alternating Convergence Test since  a    which is aÊ œ! !k k_ _

œ œn 1 n 1
n n

"
$Î#

 convergent p-series

 3. converges converges by Alternating Series Test since: u 0 for all n 1; n 1 n 1 n 3 3Ê œ �     Ê �   Ê  n
1

n3
n 1 n

n
�

 n 1 3 n 3 u u ;    u     0.Ê �   Ê Ÿ Ê Ÿ œ œa b n 1 n 1 1 1
n 1 3 n 3 n 3n 1 n n

n n
�

� �
Ä_ Ä_a b n 1 n n� lim lim

 4. converges converges by Alternating Series Test since: u 0 for all n 2; n 2 n 1 nÊ œ �     Ê �  n
4

ln na b2

 ln n 1 ln n ln n 1 ln n u u ;Ê �   Ê �   Ê Ÿ Ê Ÿ Ê Ÿa b a b a ba b 2 2 1 1 4 4
ln n 1 ln n ln n 1 ln n n 1 na b a b a b a ba b a b� � �2 2 2 2

     u      0.lim lim
n n

n
4

ln nÄ_ Ä_
œ œa b2

 5. converges converges by Alternating Series Test since: u 0 for all n 1; n 1 2n 2n n n 1Ê œ �     Ê �   � �n
n

n 1
2 2

2 �

 n 2n 2n n n n 1 n n 2n 2 n n n 1 n n 1 1 n 1 n 1Ê � �   � � � Ê � �   � � � Ê � �   � �3 2 3 2 2 3 2 22a b a b a ba bŠ ‹
 u u ;    u      0.Ê   Ê Ÿ œ œn n 1 n

n 1 n 1n 1 1 n 1 n n
n n

2 2 2� �
�

� � �
Ä_ Ä_a b lim lim

 6. diverges diverges by n  Term Test for Divergence since:     1     1 does not existÊ œ Ê � œth
n n

n 5 n 5
n 4 n 4

n 1lim lim
Ä_ Ä_

� �
� �

�2 2

2 2a b
 7. diverges diverges by n  Term Test for Divergence since:         1 does not existÊ œ _ Ê � œth

n n

2 2
n n

n 1lim lim
Ä_ Ä_

�n n

2 2a b

 8. converges absolutely  converges by the Absolute Convergence Test since  a  , which converges by theÊ œ! !k k_ _

œ œn 1 n 1
n

10
n 1

na b� x

 Ratio Test, since         0 1lim lim
n n

a
a n 2

10

Ä_ Ä_ �
n 1

n

� œ œ �

 9. diverges by the nth-Term Test since for n 10  1   lim  0   ( 1)  diverges� Ê � Ê Á Ê �n n n
10 10 10

n nn 1
n Ä _

ˆ ‰ ˆ ‰!_
œn 1

�

10. converges by the Alternating Series Test because f(x) ln x is an increasing function of x   is decreasingœ Ê "
ln x

  u u  for n 1; also u 0 for n 1 and  lim   0Ê         œn n 1 n ln n�
"

n Ä _

11. converges by the Alternating Series Test since f(x)   f (x) 0 when x e  f(x) is decreasingœ Ê œ � � Êln x 1 ln x
x x

w �
#

  u u ; also u 0 for n 1 and  lim  u  lim    lim   0Ê       œ œ œn n 1 n n
ln n

n 1� n n nÄ _ Ä _ Ä _

Š ‹"n
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12. converges by the Alternating Series Test since f(x) ln 1 x   f (x) 0 for x 0  f(x) is decreasingœ � Ê œ � � Êa b�" w �"
�x(x 1)

  u u ; also u 0 for n 1 and  lim  u  lim  ln 1 ln  lim  1 ln 1 0Ê       œ � œ � œ œn n 1 n n n n�
" "

n n nÄ _ Ä _ Ä _
ˆ ‰ ˆ ‰Š ‹

13. converges by the Alternating Series Test since f(x)   f (x) 0  f(x) is decreasingœ Ê œ � Ê
È ÈÈx 1 x 2 x

x 1 2 x (x 1)
�" � �

�
w

� #

  u u ; also u 0 for n 1 and  lim  u  lim   0Ê       œ œn n 1 n� n nÄ _ Ä _n
n

n 1

È �"

�

14. diverges by the nth-Term Test since  lim    lim   3 0
n nÄ _ Ä _

3 n 1
n 1

3 1

1

ÈÈ
É
Š ‹

�

�

�

�
œ œ Á

"

"

n

nÈ

15. converges absolutely since   a   a convergent geometric series! !k k ˆ ‰_ _

œ œn 1 n 1
n 10

n
œ "

16. converges absolutely by the Direct Comparison Test since  which is the nth term¹ ¹ ˆ ‰( 1) (0.1)
n (10) n 10

n� " "n 1 n

n

�

œ �

 of a convergent geometric series

17. converges conditionally since 0 and  lim   0  convergence; but  a   " " " "
�È È Èn nn 1 n n� � œ Ê œ

n Ä _
! !k k_ _

œ œn 1 n 1
"Î#

 is a divergent p-series

18. converges conditionally since 0 and  lim   0  convergence; but" " "
� �� �1 n 1 n1 n 1È È È� � œ Ê

n Ä _

  a    is a divergent series since  and   is a divergent p-series! ! !k k_ _ _

œ œ œn 1 n 1 n 1
n 1 n 1 n n nœ  " " " "

� � #È È È "Î#

19. converges absolutely since   a    and  which is the nth-term of a converging p-series! !k k_ _

œ œn 1 n 1
n

n n
n 1 n 1 nœ �$ $ #� �

"

20. diverges by the nth-Term Test since  lim   
n Ä _

n!
#n œ _

21. converges conditionally since 0 and  lim   0  convergence; but  a" " "
� � � �n 3 (n 1) 3 n 3 n� � œ Ê

n Ä _
! k k_

œn 1

    diverges because  and    is a divergent seriesœ  ! !_ _

œ œn 1 n 1

" " " "
� �n 3 n 3 4n n

22. converges absolutely because the series    converges by the Direct Comparison Test since ! ¸ ¸ ¸ ¸_

œn 1

sin n sin n
n n n# # #Ÿ "

23. diverges by the nth-Term Test since  lim   1 0
n Ä _

3 n
5 n
�
� œ Á

24. converges absolutely by the Direct Comparison Test since 2  which is the nth term¹ ¹ ˆ ‰( 2)
n 5 n 5 5

2 2 n�
� �

n 1

n n

n 1� �

œ �

 of a convergent geometric series

25. converges conditionally since f(x)   f (x) 0  f(x) is decreasing and henceœ � Ê œ � � � Ê" " "w
x x x x

2
# $ #

ˆ ‰
 u u 0 for n 1 and  lim  0  convergence; but   a   n n 1 n� �   � œ Ê œ� n Ä _

ˆ ‰ ! !k k" " �
n n n

1 n
# #

_ _

œ œn 1 n 1

      is the sum of a convergent and divergent series, and hence divergesœ �! !_ _

œ œn 1 n 1

" "
n n#
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26. diverges by the nth-Term Test since  lim  a  lim  10 1 0
n nÄ _ Ä _n

1 nœ œ ÁÎ

27. converges absolutely by the Ratio Test:   lim   lim  1
n nÄ _ Ä _

Š ‹ ” •u
u 3

2n 1

n

� œ œ �
(n )

n

�" #
�

#

ˆ ‰ˆ ‰
2
3

n 1

2
3

n

28. converges conditionally since f(x)   f (x) 0  f(x) is decreasingœ Ê œ � � Ê" w �
x ln x (x ln x)

ln (x) 1c d
#

  u u 0 for n 2 and  lim   0  convergence; but by the Integral Test,Ê � �   œ Ên n 1� n Ä _
"

n ln n

   lim   dx  lim  ln (ln x)  lim  ln (ln b) ln (ln 2)' '
2 2

b
b
2

_

dx
x ln x ln xœ œ œ � œ _

b b bÄ _ Ä _ Ä _� � c d c dŠ ‹"x

   a    divergesÊ œ! !k k_ _

œ œn 1 n 1
n n ln n

"

29. converges absolutely by the Integral Test since tan x  dx  lim  '
1

b

1

_a b ˆ ‰ ’ “�" "
� #1 x

tan x
#

�" #

œ
b Ä _

a b

  lim  tan b tan 1œ � œ � œ
b Ä _

’ “ ’ “a b a b ˆ ‰ ˆ ‰�" �"# # "
# #

# #1 1 1

4 32
3 #

30. converges conditionally since f(x)   f (x)œ Ê œln x
x ln x (x ln x)

(x ln x) (ln x) 1

� �
w

� � �Š ‹ Š ‹" "

x x
#

 0  u u 0 when n e and  lim   œ œ � Ê   � �
1 ln x

(x ln x) (x ln x) n ln n
1 ln x ln n

n n 1
� � �

� � �
�

�

Š ‹ Š ‹ln x ln x
x x

# # n Ä _

  lim   0  convergence; but n ln n n     so thatœ œ Ê � � Ê � Ê �
n Ä _

Š ‹
Š ‹
"

"

n

n1 n ln n n n ln n n
ln n

�

" " "
� �

  a    diverges by the Direct Comparison Test! !k k_

œn 1
n

ln n
n ln nœ

_

œn 1
�

31. diverges by the nth-Term Test since  lim   1 0
n Ä _

n
n 1� œ Á

32. converges absolutely since  a   is a convergent geometric series! !k k ˆ ‰_ _

œ œn 1 n 1
n 5

n
œ "

33. converges absolutely by the Ratio Test:   lim   lim    lim   0 1
n n nÄ _ Ä _ Ä _

Š ‹u
u (n 1)! (100) n 1

( 00) n! 00n 1

n

n 1

n
�

�

œ œ œ �"
� �

"
†

34. converges absolutely by the Direct Comparison Test since  a    and  which is the! !k k_ _

œ œn 1 n 1
n n 2n 1 n 2n 1 nœ �" " "

� � � �# # #

 nth-term of a convergent p-series

35. converges absolutely since  a      is a convergent p-series! ! !k k ¹ ¹_ _ _

œ œ œn 1 n 1 n 1
n

( 1)
n n nœ œ� "nÈ $Î#

36. converges conditionally since      is the convergent alternating harmonic series, but! !_ _

œ œn 1 n 1

cos n
n n

( 1)1 œ � n

  a    diverges! !k k_ _

œ œn 1 n 1
n nœ "

37. converges absolutely by the Root Test:   lim   a  lim    lim   1
n n nÄ _ Ä _ Ä _

Èk k Š ‹n
n

nn œ œ œ �(n 1)
(2n) n

1 n
n�

Î
�" "
# #
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38. converges absolutely by the Ratio Test:   lim   lim    lim  
n n nÄ _ Ä _ Ä _

¹ ¹a
a ((2n 2)!) (n!) (2n 2)(2n 1)

(n 1)! (2n)! (n 1)n 1

n

�

#

#

#

œ œ œa b�
� � �

�
†

"
4 � 1

39. diverges by the nth-Term Test since  lim   a  lim    lim   
n n nÄ _ Ä _ Ä _

k kn
(2n)! (n )(n 2) (2n)
2 n! n 2 nœ œn

�" � â
n

  lim    lim  0œ � œ _ Á
n nÄ _ Ä _

(n 1)(n 2) (n (n 1)) n 1 n 1� � â � �
# #

� �
n 1� ˆ ‰

40. converges absolutely by the Ratio Test:   lim    lim   
n nÄ _ Ä _

¹ ¹a
a (2n 3)! n! n! 3

(n 1)! (n 1)! 3 (2n 1)!n 1

n

n 1

n
�

�

œ � � �
� †

  lim   1œ œ �
n Ä _

(n 1) 3
(2n 2)(2n 3) 4

3�
� �

#

41. converges conditionally since  and  is a
È ÈÈ ÈÈ È ÈÈ È Èn 1 n n 1 n

1 n 1 n n 1 n n 1 n

� � � �

� � � � � �
" "

† œ š ›
 decreasing sequence of positive terms which converges to 0     converges; butÊ !_

œn 1

( )
n 1 n

�"

� �

nÈ È
   a      diverges by the Limit Comparison Test (part 1) with ; a divergent p-series:! !k k_ _

œ œn 1 n 1
n n 1 n n
œ " "

� �È ÈÈ

  lim    lim    lim   
n n nÄ _ Ä _ Ä _� �

"

� �

"

È È

È

n 1 n

n
1
n

œ œ œ
ÈÈ È É

n

n 1 n
1

1 1� � � �

"
#

42. diverges by the nth-Term Test since  lim  n n n  lim  n n n
n nÄ _ Ä _

Š ‹ Š ‹ Š ‹È È# # � �

� �
� � œ � � †

ÈÈn n n
n n n

#

#

  lim    lim   0œ œ œ Á
n nÄ _ Ä _

n
n n n 1 1È É# "� �

" "

� � #
n

43. diverges by the nth-Term Test since  lim  n n n  lim  n n n
n nÄ _ Ä _

Š ‹ Š ‹É ÉÈ È È È– —� �� � œ � �
É È È
É È È

n n n

n n n

� �

� �

  lim    lim   0œ œ œ Á
n nÄ _ Ä _

È
É ÉÈ È

n

n n n 1 1� �

" "

� � #"

Èn

44. converges conditionally since  is a decreasing sequence of positive terms converging to 0š ›"
� �È Èn n 1

    converges; but  lim    lim    lim   Ê œ œ œ!_
œn 1

( )
n n 1 n n 1

n

1 1

�"

� � � �
" "

� � #

n

n
È ÈÈ ÈÈ Én n nÄ _ Ä _ Ä _

Š ‹
Š ‹

"

� �

"

È È

È

n n 1

n
"

 so that    diverges by the Limit Comparison Test with   which is a divergent p-series! !_ _

œ œn 1 n 1

" "
� �È È Èn n 1 n

45. converges absolutely by the Direct Comparison Test since sech (n)  which is theœ œ � œ2 2e 2e 2
e e e 1 e en n 2n 2n n

n n

� ��

 nth term of a convergent geometric series

46. converges absolutely by the Limit Comparison Test (part 1):   a   ! !k k_ _

œ œn 1 n 1
n

2
e eœ n n� �

 Apply the Limit Comparison Test with , the n-th term of a convergent geometric series:1
en

  lim    lim    lim   2
n n nÄ _ Ä _ Ä _Œ �2

e en n
1
en

�

�

œ œ œ2e 2
e e 1 e

n

n n 2n� �� �

47.   ; converges by Alternating Series Test since: u 0 for all n 1;1 1 1 1 1 1 1
4 6 8 10 12 14 2 n 1 2 n 1

( )
n� � � � � � Þ Þ Þ œ œ �  !_

œn 1

�"
� �

n 1�

a b a b
 n 2 n 1 2 n 2 2 n 1 u u ;    u     0.�   � Ê �   � Ê Ÿ Ê Ÿ œ œa b a b 1 1 1

2 n 1 1 2 n 1 2 n 1n 1 n n
n na b a b a ba b� � � ��
Ä_ Ä_
lim lim
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48. 1  a ; converges by the Absolute Convergence Test since  a   � � � � � � � � Þ Þ Þ œ œ1 1 1 1 1 1 1
4 9 16 25 36 49 64 nn n! ! !k k_ _ _

œ œ œn 1 n 1 n 1

"
#

 which is a convergent p-series

49. error ( 1) 0.2 50. error ( 1) 0.00001k k k k¸ ¸ ¸ ¸ˆ ‰ ˆ ‰� � œ � � œ' '" "
5 10&

51. error ( 1) 2 10  52. error ( 1) t t 1k k k k k k¹ ¹� � œ ‚ � � œ �' �"" % % %(0.01)
5

&

53. error 0.001 u 0.001 0.001 n 1 3 1000 n 1 997 30.5753 n 31k k a b È� Ê � Ê � Ê � � � Ê � � � ¸ Ê  n 1
1

n 1 3
2

� � �a b2

54. error 0.001 u 0.001 0.001 n 1 1 1000 n 1 nk k a b a b� Ê � Ê � Ê � � � � Ê �n 1
n 1

n 1 1
2 998 998 4 998

2�
�

� �

� �a b
È a b

2

2

 998.9999 n 999¸ Ê  

55. error 0.001 u 0.001 0.001 n 1 3 n 1 1000k k a bŠ ‹È� Ê � Ê � Ê � � � �n 1
1

n 1 3 n 1

3

�
� � �ˆ ‰a b È 3

 n 1 3 n 1 10 0 n 1 2 n 3 n 4Ê � � � � � Ê � œ � œ Ê œ Ê  Š ‹È È È2
3 9 40

2
� �È

56. error 0.001 u 0.001 0.001 ln ln n 3 1000 n 3 e 5.297 10k k a ba b� Ê � Ê � Ê � � Ê � � � ¸ ‚n 1
1

ln ln n 3
e 323228467

� �a ba b 1000

 which is the maximum arbitrary-precision number represented by Mathematica on the particular computer solving this
 problem..

57.   (2n)! 200,000  n 5  1 0.54030" " " " "
#(2n)! 10 5 ! 4! 6! 8!

5 10� Ê � œ Ê   Ê � � � � ¸'

'

58.   n!  n 9  1 1 0.367881944" " " " " " " "
#n! 10 5 ! 3! 4! 5! 6! 7! 8!

5 10� Ê � Ê   Ê � � � � � � � � ¸'

'

59. (a) a a  fails since n n 1 3  ��
" "

#

 (b) Since   a       is the sum of two absolutely convergent! ! ! !k k � ‘ ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰_ _ _ _

œ œ œ œn 1 n 1 n 1 n 1
n 3 3

n n n n
œ � œ �" " " "

# #

 series, we can rearrange the terms of the original series to find its sum:

 1ˆ ‰ ˆ ‰" " " " " " " "
# # #� �3 9 27 4 8 1 1

� � �á � � � �á œ � œ � œ �
ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰
" "

" "

#

#

3

3

60. s 1 0.6687714032  s 0.692580927#! #!
" " " " " " "
# # #œ � � � �á � � ¸ Ê � ¸3 4 19 20 1†

61. The unused terms are  ( 1) a ( 1) a a ( 1) a a! a b a b_

œ �

� � �

� � � �

j n 1

j 1 n 1 n 3
j n 1 n 2 n 3 n 4� œ � � � � � �á

 ( 1) a a a a .  Each grouped term is positive, so the remainderœ � � � � �án 1
n 1 n 2 n 3 n 4

�

� � � �c da b a b
 has the same sign as ( 1) , which is the sign of the first unused term.� n 1�

62. s     n 1 2 3 3 4 n(n 1) k(k 1) k k 1œ � � �á � œ œ �" " " " " " "
# � � �† † †

! ! ˆ ‰n n

k 1 k 1œ œ

 1  which are the first 2n termsœ � � � � � � � �á � �ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰" " " " " " " " "
# # �3 3 4 4 5 n n 1

 of the first series, hence the two series are the same.  Yes, for

 s   1 1n k k 1 3 3 4 4 5 n 1 n n n 1 n 1œ � œ � � � � � � � �á � � � � œ �! ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰n

k 1œ

" " " " " " " " " " " " " "
� # # � � �
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   lim  s  lim  1 1  both series converge to 1.  The sum of the first 2n 1 terms of the firstÊ œ � œ Ê �
n nÄ _ Ä _n n 1

ˆ ‰"
�

 series is 1 1.  Their sum is  lim  s  lim  1 1.ˆ ‰ ˆ ‰� � œ œ � œ" " "
� � �n 1 n 1 n 1nn nÄ _ Ä _

63. Theorem 16 states that  a  converges   a  converges. But this is equivalent to   a  diverges  a  div! ! ! !k k k k_ _ _ _

œ œ œ œn 1 n 1 n 1 n 1
n n n nÊ Ê erges

64. a a a a a a  for all n; then  a  converges   a  converges and these imply thatk k k k k k k k k k! !" # " #� �á � Ÿ � �á � Ên n n n

_ _

œ œn 1 n 1

  a  aº º! ! k k_ _

œ œn 1 n 1
n nŸ

65. (a)   a b  converges by the Direct Comparison Test since a b a b  and hence! k k k k k k k k_

œn 1
n n n n n n� � Ÿ �

 a b  converges absolutely!a b_

œn 1
n n�

 (b)  b  converges   b   converges absolutely; since  a  converges absolutely and! ! !k k_ _ _

œ œ œn 1 n 1 n 1
n n nÊ �

 b   converges absolutely, we have a ( b ) a b   converges absolutely by part (a)! ! !c d a b_ _ _

œ œ œn 1 n 1 n 1
� � � œ �n n n n n

 (c)  a  converges  k  a ka  converges  ka  converges absolutely! ! ! !k k k k k k k k_ _ _ _

œ œ œ œn 1 n 1 n 1 n 1
n n n nÊ œ Ê

66. If a b ( 1)  , then  ( 1)   converges, but  a b    divergesn n n n
n n

n n nœ œ � � œ" " "È È! ! !_ _ _

œ œ œn 1 n 1 n 1

67. s , s 1 ," #
" " "
# # #œ � œ � � œ

 s 1 0.5099,$
" " " " " " " " " " "
# # # #œ � � � � � � � � � � � � ¸ �4 6 8 10 1 14 16 18 0 2

 s s 0.1766,% $
"œ � ¸ �3

 s s 0.512,& %
" " " " " " " " " " "
# # # #œ � � � � � � � � � � � ¸ �4 6 8 30 3 34 36 38 40 42 44

 s s 0.312,' &
"œ � ¸ �5

 s s 0.51106( '
" " " " " " " " " " "œ � � � � � � � � � � � ¸ �46 48 50 52 54 56 58 60 62 64 66

 

68. (a) Since   a  converges, say to M, for 0 there is an integer N  such that   a M! !k k k kº ºn n% � � �" #

N 1

n 1

"�

œ

%

     a    a  a       a     a .  Also,  aÍ � � � Í � � Í �» » » »! ! ! ! ! !k k k k k k k k k k� �N 1 N 1

n 1 n 1 n N n N n N

" "

" " "

� �

œ œ œ œ œ

_ _ _

n n n n n n
% % %

# # #

 converges to L  for 0 there is an integer N  (which we can choose greater than or equal to N ) suchÍ �% # "

 that s L .  Therefore,   a  and s L .k k k k k k!N N# #
� � � � �% % %

# # #

_

œn N"

n
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 (b) The series  a  converges absolutely, say to M.  Thus, there exists N  such that   a M! !k k k kº º_

œ œn 1 n 1

k

n n" � � %

 whenever k N .  Now all of the terms in the sequence b  appear in a .  Sum together all of the� " e f e fk k k kn n

 terms in b , in order, until you include all of the terms a , and let N  be the largest index in thee f e fk k k kn n
N
n 1
"

œ #

 sum   b  so obtained.  Then   b M  as well  b  converges to M.! ! !k k k k k kº ºN N

n 1 n 1 n 1

# #

œ œ œ

_

n n n� � Ê%

10.7  POWER SERIES

 1.  lim   1   lim   1  x 1  1 x 1; when x 1 we have  ( 1) , a divergent
n nÄ _ Ä _

¹ ¹ ¹ ¹ k k !u
u x

xn 1

n

n 1

n
�

�

� Ê � Ê � Ê � � � œ � �
_

œn 1

n

 series; when x 1 we have  1, a divergent seriesœ !_
œn 1

 (a) the radius is 1; the interval of convergence is 1 x 1� � �

 (b) the interval of absolute convergence is 1 x 1� � �

 (c) there are no values for which the series converges conditionally

 2.  lim   1   lim   1  x 5 1  6 x 4; when x 6 we have
n nÄ _ Ä _

¹ ¹ ¹ ¹ k ku
u (x 5)

(x 5)n 1

n

n 1

n
�

�

� Ê � Ê � � Ê � � � � œ ��
�

  ( 1) , a divergent series; when x 4 we have  1, a divergent series! !_ _

œ œn 1 n 1
� œ �n

 (a) the radius is 1; the interval of convergence is 6 x 4� � � �

 (b) the interval of absolute convergence is 6 x 4� � � �

 (c) there are no values for which the series converges conditionally

 3.  lim   1   lim   1  4x 1 1  1 4x 1 1 x 0; when x  we
n nÄ _ Ä _

¹ ¹ ¹ ¹ k ku
u (4x 1)

(4x 1)n 1

n

n 1

n
�

�

� Ê � Ê � � Ê � � � � Ê � � � œ ��
� # #

" "

 have ( 1) ( 1)  ( 1)  1 , a divergent series; when x 0 we have  ( 1) (1) ( 1) ,! ! ! ! !_ _ _ _ _

œ œ œ œ œn 1 n 1 n 1 n 1 n 1
� � œ � œ œ � œ �n n 2n n n n n

 a divergent series

 (a) the radius is ; the interval of convergence is x 0" "
#4 � � �

 (b) the interval of absolute convergence is x 0� � �"
#

 (c) there are no values for which the series converges conditionally

 4.  lim   1   lim   1  3x 2   lim  1  3x 2 1
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ k k k kˆ ‰u
u n 1 (3x 2) n 1

(3x 2) n nn 1

n

n 1

n
�

�

� Ê � Ê � � Ê � ��
� � �†

  1 3x 2 1  x 1; when x  we have    which is the alternating harmonic series and isÊ � � � � Ê � � œ" " �"
3 3 n

( )!_
œn 1

n

 conditionally convergent; when x 1 we have   , the divergent harmonic seriesœ !_
œn 1

"
n

 (a) the radius is ; the interval of convergence is x 1" "
3 3 Ÿ �

 (b) the interval of absolute convergence is x 1"
3 � �

 (c) the series converges conditionally at x œ "
3

 5.  lim   1   lim   1  1  x 2 10  10 x 2 10
n nÄ _ Ä _

¹ ¹ ¹ ¹ k ku
u 10 (x 2) 10

(x 2) 10 x 2n 1

n

n 1

n 1 n

n
�

�

�� Ê � Ê � Ê � � Ê � � � ��
�

�
†

k k

  8 x 12; when x 8 we have   ( ) , a divergent series; when x 12 we have 1, a divergent seriesÊ � � � œ � �" œ! !_ _

œ œn 1 n 1

n

 (a) the radius is 0; the interval of convergence is 8 x 12" � � �

 (b) the interval of absolute convergence is 8 x 12� � �

 (c) there are no values for which the series converges conditionally
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 6.  lim   1   lim   1   lim   2x 1  2x 1  x ; when x  we have
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ k k k ku
u (2x)

(2x)n 1

n

n 1

n
�

�

� Ê � Ê � Ê � Ê � � � œ �" " "
# # #

  ( ) , a divergent series; when x  we have 1, a divergent series! !_ _

œ œn 1 n 1
�" œn "

#

 (a) the radius is ; the interval of convergence is x" " "
# # #� � �

 (b) the interval of absolute convergence is x� � �" "
# #

 (c) there are no values for which the series converges conditionally

 7.  lim   1   lim   1  x   lim   1  x 1
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ k k k ku
u (n 3) nx (n 3)(n)

(n 1)x (n 2) (n 1)(n 2)n 1

n

n 1

n
�

�

� Ê � Ê � Ê �� � � �
� �†

  1 x 1; when x 1 we have  ( )  , a divergent series by the nth-term Test; when x  weÊ � � � œ � �" œ "!_
œn 1

n n
n�#

 have  , a divergent series!_
œn 1

n
n�#

 (a) the radius is ; the interval of convergence is x" �" � � "

 (b) the interval of absolute convergence is x�" � � "

 (c) there are no values for which the series converges conditionally

 8.  lim   1   lim   1  x 2   lim  1  x 2 1
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ k k k kˆ ‰u
u n 1 (x 2) n 1

(x 2) n nn 1

n

n 1

n
�

�

� Ê � Ê � � Ê � ��
� � �†

  1 x 2 1  3 x 1; when x 3 we have   , a divergent series; when x  we haveÊ � � � � Ê � � � � œ � œ �"!_
œn 1

"
n

   , a convergent series!_
œn 1

( 1)
n

� n

 (a) the radius is ; the interval of convergence is 3 x" � � Ÿ �"

 (b) the interval of absolute convergence is 3 x� � � �"

 (c) the series converges conditionally at x 1œ �

 9.  lim   1   lim   1   lim    lim   1
n n n nÄ _ Ä _ Ä _ Ä _

¹ ¹ ¹ ¹ Š ‹Š ‹Éu
u x 3 n 1 n 1

x n n
(n 1) n 1 3

n n 3 xn 1

n

n 1

n 1

n

n
�

�

�
� Ê � Ê �

� � � �È È k k
†

  (1)(1) 1  x 3  3 x 3; when x 3 we have  , an absolutely convergent series;Ê � Ê � Ê � � � œ �k kx
3

( )
nk k !_

œn 1

�" n

$Î#

 when x 3 we have   , a convergent p-seriesœ !_
œn 1

1
n$Î#

 (a) the radius is 3; the interval of convergence is 3 x 3� Ÿ Ÿ

 (b) the interval of absolute convergence is 3 x 3� Ÿ Ÿ

 (c) there are no values for which the series converges conditionally

10.  lim   1   lim   1  x 1  lim   1  x 1 1
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ k k k kÉu
u (x 1) n 1

(x 1)
n 1

n nn 1

n

n 1

n
�

�

� Ê � Ê � � Ê � ��

� � �È È
†

  1 x 1 1  0 x 2; when x 0 we have   , a conditionally convergent series; when x 2Ê � � � � Ê � � œ œ!_
œn 1

( )
n
�" n

"Î#

 we have   , a divergent series!_
œn 1

1
n"Î#

 (a) the radius is 1; the interval of convergence is 0 x 2Ÿ �

 (b) the interval of absolute convergence is 0 x 2� �

 (c) the series converges conditionally at x 0œ

11.  lim   1   lim   1  x   lim  1 for all x
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ k k ˆ ‰u
u (n 1)! x n 1

x n!n 1

n

n 1

n
�

�

� Ê � Ê �� �
"

†

 (a) the radius is ; the series converges for all x_
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 (b) the series converges absolutely for all x
 (c) there are no values for which the series converges conditionally

12.  lim   1   lim   1  3 x   lim  1 for all x
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ k k ˆ ‰u
u (n 1)! 3 x n 1

3 x n!n 1

n

n 1 n 1

n n
�

� �

� Ê � Ê �� �
"

†

 (a) the radius is ; the series converges for all x_

 (b) the series converges absolutely for all x
 (c) there are no values for which the series converges conditionally

13.  lim   1   lim   1  x   lim  4x 1 x
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ ˆ ‰u
u n 1 4 x n 1 4

4 x n 4n 1n 1

n

n 1 2n 2

n 2n
�

� �

� Ê � Ê œ � Ê �� �
# # #

†

  x ; when x  we have  , a divergent p-series; when x  we haveÊ � � � œ � � œ œ1 1 1 4 1 1 1
2 2 2 n 2 n 2

2n! !ˆ ‰_ _

œ œn 1 n 1

n

     , a divergent p-series! !ˆ ‰_ _

œ œn 1 n 1

4 1 1
n 2 n

2nn
œ

 (a) the radius is ; the interval of convergence is x1 1 1
2 2 2� � �

 (b) the interval of absolute convergence is x� � �1 1
2 2

 (c) there are no values for which the series converges conditionally

14.  lim   1   lim   1  x 1   lim  x 1 1
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ Š ‹u
u (x 1) 3

(x 1)
n 1 3 3 n 1

n 3 n 1n 1

n

n 1

2 n 2n 1

2 n 2
�

�

�
� Ê � Ê l � l œ l � l ��

� ��a b a b†

 2 x 4; when x 2 we have , an absolutely convergent series; when x 4 we haveÊ � � � œ � œ œ! !_ _

œ œn 1 n 1

( 3) ( 1)
n 3 n
� �n n

2 n 2

 , an absolutely convergent series.! !_ _

œ œn 1 n 1

(3)
n 3 n

1n

2 n 2œ

 (a) the radius is 3; the interval of convergence is 2 x 4� Ÿ Ÿ

 (b) the interval of absolute convergence is 2 x 4� Ÿ Ÿ

 (c) there are no values for which the series converges conditionally

15.  lim   1   lim   1  x   lim     x 1
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ k k k kÉu
u x n 2n 4

x n 3
(n 1) 3

n 3n 1

n

n 1

n
�

�

#

# #

#� Ê � Ê � " Ê �È È
� �

� �
� �†

  1 x 1; when x 1 we have   , a conditionally convergent series; when x 1 we haveÊ � � � œ � œ!_
œn 1

( )
n 3
�"

�

nÈ #

   , a divergent series!_
œn 1

"

�Èn 3#

 (a) the radius is 1; the interval of convergence is 1 x 1� Ÿ �

 (b) the interval of absolute convergence is 1 x 1� � �

 (c) the series converges conditionally at x 1œ �

16.  lim   1   lim   1  x   lim     x 1
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ k k k kÉu
u x n 2n 4

x n 3
(n 1) 3

n 3n 1

n

n 1

n
�

�

#

# #

#� Ê � Ê � " Ê �È È
� �

� �
� �†

  1 x 1; when x 1 we have   , a divergent series; when x 1 we have   ,Ê � � � œ � œ! !_ _

œ œn 1 n 1

"

� �

�"È Èn 3 n 3
( )

# #

n

 a conditionally convergent series
 (a) the radius is 1; the interval of convergence is 1 x 1� � Ÿ

 (b) the interval of absolute convergence is 1 x 1� � �

 (c) the series converges conditionally at x 1œ
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17.  lim   1   lim   1    lim  1  1
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ ˆ ‰u
u 5 n(x 3) 5 n 5

(n 1)(x 3) 5 nx 3 x 3n 1

n

n 1

n 1 n

n
�

�

�� Ê � Ê � Ê �� �
�

� ��"
†

k k k k

  x 3 5  5 x 3 5  8 x 2; when x 8 we have    ( 1) n, a divergentÊ � � Ê � � � � Ê � � � œ � œ �k k ! !_ _

œ œn 1 n 1

n( 5)
5
� n

n
n

 series; when x 2 we have   n, a divergent seriesœ œ! !_ _

œ œn 1 n 1

n5
5

n

n

 (a) the radius is 5; the interval of convergence is 8 x 2� � �

 (b) the interval of absolute convergence is 8 x 2� � �

 (c) there are no values for which the series converges conditionally

18.  lim   1   lim   1    lim  1  x 4
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ ¹ ¹ k ku
u 4 n 2n 2 nx 4 n n 2n 2

(n 1)x 4 n 1 (n 1) n 1xn 1

n

n 1

n 1 n

n
�

�

� # #

# #

� Ê � Ê � Ê ��
� � � �

� � �a b a ba b a bk k
†

  4 x 4; when x 4 we have   , a conditionally convergent series; when x 4 we have   ,Ê � � � œ � œ! !_ _

œ œn 1 n 1

n( 1)
n 1 n 1

n�
� �

n

# #

 a divergent series
 (a) the radius is 4; the interval of convergence is 4 x 4� Ÿ �

 (b) the interval of absolute convergence is 4 x 4� � �

 (c) the series converges conditionally at x 4œ �

19.  lim   1   lim   1    lim  1  1  x 3
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ É ˆ ‰ k ku
u 3 3 n 3

n 1 x x x3 n 1
n x

n 1

n

n 1

n 1

n

n
�

�

�� Ê � Ê � Ê � Ê �
È È k k k k� �

†

 3 x 3; when x 3 we have  ( 1) n , a divergent series; when x 3 we have   n, a divergent seriesÊ � � � œ � � œ! !È È_ _

œ œn 1 n 1

n

 (a) the radius is 3; the interval of convergence is 3 x 3� � �

 (b) the interval of absolute convergence is 3 x 3� � �

 (c) there are no values for which the series converges conditionally

20.  lim   1   lim   1  2x 5   lim  1
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ Š ‹k ku
u

n  1 (2x 5) n  1
n (2x 5) n

n 1

n

n 1 n 1n 1

n nn
�

� ��

� Ê � Ê � �
È ÈÈ È� � �

�

  2x 5  1  2x 5 1  1 2x 5 1  3 x 2; when x 3 we haveÊ � � Ê � � Ê � � � � Ê � � � � œ �k k k kŒ � lim  t

 lim  n
t

n

Ä_

Ä_

È
È
t

n

 ( 1) n, a divergent series since  lim  n 1; when x 2 we have n, a divergent series! !È È È_ _

œ œn 1 n 1
� œ œ �n n n

n Ä _

 (a) the radius is ; the interval of convergence is 3 x 2"
# � � � �

 (b) the interval of absolute convergence is 3 x 2� � � �

 (c) there are no values for which the series converges conditionally

21. First, rewrite the series as   2 ( 1) x 1  2 x 1  ( 1) x 1 . For the series! ! !a ba b a b a b_ _ _

œ œ œn 1 n 1 n 1
� � � œ � � � �n nn 1 n 1 n 1� � �

  2 x 1 :  lim   1  lim   1 x 1  lim   1 x 1 1 2 x 0; For the! a b ¹ ¹ ¹ ¹_

œn 1
� � Ê � Ê l � l œ l � l � Ê � � �n 1 2 x 1u

u 2 x 1
� �

�n n nÄ _ Ä _ Ä _
n 1

n

n

n 1
�

�

a ba b
 series  ( 1) x 1 :  lim   1  lim   1 x 1  lim   1 x 1 1! a b ¹ ¹ ¹ ¹_

œn 1
� � � Ê � Ê l � l œ l � l �n n 1 ( 1) x 1u

u ( 1) x 1
� � �

� �n n nÄ _ Ä _ Ä _
n 1

n

n 1 n

n n 1
�

�

�

a ba b
 2 x 0; when x 2 we have  2 ( 1) 1 , a divergent series; when x 0 we haveÊ � � � œ � � � � œ! a ba b_

œn 1

n n 1�

   2 ( 1) , a divergent series! a b_

œn 1
� � n

 (a) the radius is 1; the interval of convergence is 2 x 0� � �

 (b) the interval of absolute convergence is 2 x 0� � �

 (c) there are no values for which the series converges conditionally
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22.  lim   1  lim   1 x 2  lim   9 x 2 1
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹u
u 3 n 1 n 1

( 1) 3 x 2 3n 9n
( 1) 3 x 2

n 1

n

n 1 2n 2 n 1

n 2n n
�

� � �

� Ê † � Ê l � l œ l � l �� �
� �� �
a ba b a b

 x ; when x  we have   , a divergent series; when x  we haveÊ � � œ � œ œ17 19 17 1 1 19
9 9 9 3n 9 3n 9

( 1) 3 n! !ˆ ‰_ _

œ œn 1 n 1

� n 2n

    , a conditionally convergent series.! !ˆ ‰_ _

œ œn 1 n 1

( 1) 3 ( 1)
3n 9 3n

1 n� �n 2n n

œ

 (a) the radius is ; the interval of convergence is x1 17 19
9 9 9� Ÿ

 (b) the interval of absolute convergence is x17 19
9 9� �

 (c) the series converges conditionally at x œ 19
9

23.  lim   1   lim   1  x  1  x 1  x 1
n nÄ _ Ä _

¹ ¹ » » � �k k k k k kˆ ‰u
u e

1 x  lim  1

1 x  lim  1

en 1

n n

n 1 t
n 1

n n
�

�
�

� Ê � Ê � Ê � Ê �
Š ‹ Š ‹

Š ‹ Š ‹
� �

� �

" "

�

" "

n 1 t

n n

t

n

Ä_

Ä_

  1 x 1; when x 1 we have  ( 1) 1 , a divergent series by the nth-Term Test sinceÊ � � � œ � � �! ˆ ‰_

œn 1

n
n

n"

  lim  1 e 0; when x 1 we have  1 , a divergent series
n Ä _

ˆ ‰ ˆ ‰!� œ Á œ �" "
n n

n n_

œn 1

 (a) the radius is ; the interval of convergence is 1 x 1" � � �

 (b) the interval of absolute convergence is 1 x 1� � �

 (c) there are no values for which the series converges conditionally

24.  lim   1   lim   1  x   lim   1  x   lim  1  x 1
n n n nÄ _ Ä _ Ä _ Ä _

¹ ¹ ¹ ¹ k k k k k kº º ˆ ‰u
u x  ln n n 1

ln (n 1)x nn 1

n

n 1

n
�

�

� Ê � Ê � Ê � Ê ��
�

ˆ ‰ˆ ‰
"

�

"

n 1

n

 1 x 1; when x 1 we have ( 1)  ln n, a divergent series by the nth-Term Test since  lim  ln n 0;Ê � � � œ � � Á!_
œn 1

n
n Ä _

 when x 1 we have  ln n, a divergent seriesœ !_
œn 1

 (a) the radius is 1; the interval of convergence is 1 x 1� � �

 (b) the interval of absolute convergence is 1 x 1� � �

 (c) there are no values for which the series converges conditionally

25.  lim   1   lim   1  x   lim  1  lim  (n 1) 1
n n n nÄ _ Ä _ Ä _ Ä _

¹ ¹ ¹ ¹ Š ‹Š ‹k k ˆ ‰u
u n x n

(n 1) x nn 1

n

n 1 n 1

n n
�

� �

� Ê � Ê � � �� "

  e x   lim  (n 1) 1  only x 0 satisfies this inequalityÊ � � Ê œk k
n Ä _

 (a) the radius is 0; the series converges only for x 0œ

 (b) the series converges absolutely only for x 0œ

 (c) there are no values for which the series converges conditionally

26.  lim   1   lim   1  x 4   lim  (n 1) 1  only x 4 satisfies this inequality
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ k ku
u n! (x 4)

(n 1)! (x 4)n 1

n

n 1

n
�

�

� Ê � Ê � � � Ê œ� �
�

 (a) the radius is 0; the series converges only for x 4œ

 (b) the series converges absolutely only for x 4œ

 (c) there are no values for which the series converges conditionally

27.  lim   1   lim   1    lim  1  1  x 2 2
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ ˆ ‰ k ku
u (n 1) 2 (x 2) n 1

(x 2) n2 nx 2 x 2n 1

n

n 1

n 1 n

n
�

�

�� Ê � Ê � Ê � Ê � ��
� � # � #

� �
†

k k k k

  2 x 2 2  4 x 0; when x 4 we have , a divergent series; when x 0 we have ,Ê � � � � Ê � � � œ � œ! !_ _

œ œn 1 n 1

�" �
n n

( 1)n 1�

 the alternating harmonic series which converges conditionally
 (a) the radius is 2; the interval of convergence is 4 x 0� � Ÿ

 (b) the interval of absolute convergence is 4 x 0� � �

 (c) the series converges conditionally at x 0œ
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28.  lim   1   lim   1  2 x 1   lim  1  2 x 1 1
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ k k k kˆ ‰u
u ( 2) (n 1)(x 1) n 1

( 2) (n 2)(x 1) n 2n 1

n

n 1 n 1

n n
�

� �

� Ê � Ê � � Ê � �� � �
� � � �

�

  x 1   x 1   x ; when x  we have (n 1) , a divergent series; when xÊ � � Ê � � � � Ê � � œ � œk k !" " " " "
# # # # # # #

3 3
_

œn 1

 we have ( 1) (n 1), a divergent series!_
œn 1

n� �

 (a) the radius is ; the interval of convergence is x" "
# # #� � 3

 (b) the interval of absolute convergence is x"
# #� � 3

 (c) there are no values for which the series converges conditionally

29.  lim   1   lim   1   x    lim   lim   1
n n n nÄ _ Ä _ Ä _ Ä _

¹ ¹ ¹ ¹ Š ‹Š ‹k ku
u x n 1 ln (n 1)

x n ln n
(n 1) ln (n 1)

n(ln n)n 1

n

n 1

n
�

�

#

#

� Ê � Ê �
� � � �

#

a b †

  x (1)  lim   1  x   lim   1  x 1  1 x 1; when x 1 we haveÊ � Ê � Ê � Ê � � � œ �k k k k k kŒ � Š ‹n nÄ _ Ä _

ˆ ‰ˆ ‰
"

"

�

n

n 1

#
�

#
n 1

n

   which converges absolutely; when x 1 we have    which converges! !_ _

œ œn 1 n 1

( 1)
n(ln n) n(ln n)
� "n

# #œ

 (a) the radius is ; the interval of convergence is 1 x 1" � Ÿ Ÿ

 (b) the interval of absolute convergence is 1 x 1� Ÿ Ÿ

 (c) there are no values for which the series converges conditionally

30.  lim   1   lim   1   x    lim   lim   1
n n n nÄ _ Ä _ Ä _ Ä _

¹ ¹ ¹ ¹ Š ‹Š ‹k ku
u (n 1) ln (n 1) x n 1 ln (n 1)

x nn ln (n) ln (n)n 1

n

n 1

n
�

�

� Ê � Ê �� � � �†

  x (1)(1) 1  x 1  1 x 1; when x 1 we have   , a convergent alternating series;Ê � Ê � Ê � � � œ �k k k k !_
œn 2

( 1)
n ln n
� n

 when x 1 we have    which diverges by Exercise 38, Section 9.3œ !_
œn 2

"
n ln n

 (a) the radius is ; the interval of convergence is 1 x 1" � Ÿ �

 (b) the interval of absolute convergence is 1 x 1� � �

 (c) the series converges conditionally at x 1œ �

31.  lim   1   lim   1   (4x 5)  lim  1  (4x 5) 1
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ Š ‹u
u (4x 5) n 1

(4x 5)
(n 1)

n nn 1

n

2n 3

2n 1
�

�

$Î#

$Î#

�� Ê � Ê � � Ê � ��
� � �

# #
$Î#

†

  4x 5 1  1 4x 5 1  1 x ; when x 1 we have       which isÊ � � Ê � � � � Ê � � œ œk k ! !3 ( 1)
n n#

� �"
_ _

œ œn 1 n 1

2n 1�

$Î# $Î#

 absolutely convergent; when x  we have  , a convergent p-seriesœ 3 ( )
n#
"!_

œn 1

2n 1�

$Î#

 (a) the radius is ; the interval of convergence is 1 x"
#4
3Ÿ Ÿ

 (b) the interval of absolute convergence is 1 xŸ Ÿ 3
#

 (c) there are no values for which the series converges conditionally

32.  lim   1   lim   1   3x 1   lim  1  3x 1 1
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ k k k kˆ ‰u
u 2n 4 (3x 1) 2n 4

(3x 1) 2n 2 2n 2n 1

n

n 2

n 1
�

�

�� Ê � Ê � � Ê � ��
� � �

� �
†

  1 3x 1 1  x 0; when x  we have  , a conditionally convergent series;Ê � � � � Ê � � � œ �2 2
3 3 2n 1

( 1)!_
œn 1

�
�

n 1�

 when x 0 we have     , a divergent seriesœ œ! !_ _

œ œn 1 n 1

( )
2n 1 n 1
"
� # �

"n 1�

 (a) the radius is ; the interval of convergence is x 0"
3 3

2� Ÿ �

 (b) the interval of absolute convergence is x 0� � �2
3

 (c) the series converges conditionally at x œ � 2
3

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.



614 Chapter 10 Infinite Sequences and Series

33.  lim   1   lim   1   x   lim  1 for all x
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ k k ˆ ‰u
u 2 4 6 2n 2 n 1 x 2n 2

x 12 4 6 2nn 1

n

n 1

n
�

�

� Ê � Ê �† † â � �
† † âa ba ba b a b

†

 (a) the radius is ; the series converges for all x_

 (b) the series converges absolutely for all x
 (c) there are no values for which the series converges conditionally

34.  lim   1   lim   1 x   lim  1 
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ Š ‹k ku
u 3 5 7 2n 1 x

3 5 7 2n 1 2 n 1 1 x 2n 3 n
n 1 2 2 n 1

n 2n 1

n

n 2 2

2 n 1 2n 1

2 n
�

�

� �� Ê � Ê �† † â � � � �

� �† † â �
a ba b a ba ba b a ba b† Ê  only

 x 0 satisfies this inequalityœ

 (a) the radius is 0; the series converges only for x 0œ

 (b) the series converges absolutely only for x 0œ

 (c) there are no values for which the series converges conditionally

35. For the series  x , recall 1 2 n  and 1 2 n  so that we can!_
œn 1

1 2 n
1 2 n 2 6

n 2 2 2n n 1 n n 1 2n 1� �â�
� �â�

� � �
2 2 2 � � â� œ � � â� œa b a ba b

 rewrite the series as  x  x ; then  lim   1   lim   ! !Œ � ˆ ‰ ¹ ¹ ¹ ¹_ _

œ œn 1 n 1

n n 1
2

n n 1 2n 1
6

n 1

n

n 1a b

a ba b

�

� �

�
�n n3 3x

2n 1 u 2 n 1 1
u 2nœ � Ê� � �n nÄ _ Ä _ a ba b a b

†

� 1
3xn � 1

 x    lim   1 x 1 1 x 1; when x 1 we have  1 , a conditionallyÊ � Ê � Ê � � � œ � �k k k k a b¹ ¹ ! ˆ ‰
n Ä _

a ba b2n 1 n
2n 3 2n 1

3�
� �

_

œn 1

 convergent series; when x 1 we have  , a divergent series.œ ! ˆ ‰_

œn 1

3
2n 1�

 (a) the radius is 1; the interval of convergence is 1 x 1� Ÿ �

 (b) the interval of absolute convergence is 1 x 1� � �

 (c) the series converges conditionally at x 1œ �

36. For the series  n 1 n x 3 , note that n 1 n   so that we! Š ‹È ÈÈ Èa b_

œn 1
� � � � � œ † œn n 1 n n 1 n

1 n 1 n n 1 n
1È ÈÈ ÈÈ ÈÈ È� � � �

� � � �

 can rewrite the series as  ; then   lim   1  lim   1! ¹ ¹ ¹ ¹_

œn 1

a b a bÈ È ÈÈ
È Èa bx 3 x 3

n 1 n n 2 n 1
u
u

n 1 n
x 3

� �

� � � � �

� �

�

n n 1
n 1

n
nn nÄ _ Ä _

�

�

� Ê �†

 x 3  lim   1 x 3 1 2 x 4; when x 2 we have  , a conditionallyÊ l � l � Ê l � l � Ê � � œ
n Ä _

È ÈÈ È È a b Èn 1 n

n 2 n 1 n 1 n
1� �

� � � � �

�!_
œn 1

n

 convergent series; when x 4 we have  , a divergent series;œ !_
œn 1

1
n 1 nÈ È� �

 (a) the radius is 1; the interval of convergence is 2 x 4Ÿ �

 (b) the interval of absolute convergence is 2 x 4� �

 (c) the series converges conditionally at x 2œ

37.  lim   1  lim   1 x  lim   1 1 x 3 R 3
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ ¹ ¹u
u 3 6 9 3n 3 n 1 n x 3 n 1 3

n 1 x 3 6 9 3n n 1 xn 1

n

n 1

n
�

�

� Ê � Ê l l � Ê � Ê l l � Ê œa b a b a ba ba b a ba b� x † † â �
† † â � x �

l l
†

38.  lim   1  lim   1 x  lim
n n nÄ _ Ä _ Ä

¹ ¹ ¹ ¹u
u

2 4 6 2n 2 n 1 x 2 5 8 3n 1
2 5 8 3n 1 3 n 1 1 2 4 6 2n x

n 1

n

2 2n 1

2 2 n
�

�

� Ê � Ê l la b a ba ba b a ba ba b a ba ba b a ba b† † â � † † â �

† † â � � � † † â
†

_
  1 1¹ ¹a ba b2n 2

3n 2
4 x

9
�

�

l l2

2 � Ê �

 x RÊ l l � Ê œ9 9
4 4

39.  lim   1  lim   1 x  lim   1 1 x 8
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ ¹ ¹u
u 2 2 n 1 2 2n 2 2n 1 8

n 1 x 2 2n n 1
n x

xn 1

n

2 2n 1 n

n 1 2 n
�

�

�� Ê � Ê l l � Ê � Ê l l � Êa b a b a ba ba b a ba ba b a b� x x �
� x � �x

l l
† R 8œ

40.  lim   u 1  lim   x 1 x  lim   1 x e 1 x e R e
n n nÄ _ Ä _ Ä _

È Éˆ ‰ ˆ ‰n n
2

n
n n

n 1 n 1
n nn 1� Ê � Ê l l � Ê l l � Ê l l � Ê œ� �

�
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41.  lim   1   lim   1   x   lim   3 1  x   x ; at x  we have
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹u
u 3 x 3 3 3 3

3 x 1 1 1 1n 1

n

n 1 n 1

n n
�

� �

� Ê � Ê l l � Ê l l � Ê � � � œ �

  3  1 , which diverges; at x  we have  3  1 , which diverges. The series  3 x! ! ! ! !ˆ ‰ ˆ ‰a b_ _ _ _ _

œ œ œ œ œn 0 n 0 n 0 n 0 n 0

n n n n1 1 1
3 3 3

n nn� œ � œ œ

  3x  is a convergent geometric series when x  and the sum is .œ � � �! a b_

œn 0

n 1 1 1
3 3 1 3x�

42.  lim   1   lim   1 e 4   lim   1 1 e 4 1 3 e 5 ln 3 x ln 5;
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹u
u

e 4
e 4

x x xn 1

n

x n 1

x n
�

�

� Ê � Ê l � l � Ê l � l � Ê � � Ê � �a ba b�
�

 at x ln 3 we have  e 4  1 , which diverges; at x ln 5 we have  e 4  1, whichœ � œ � œ � œ! ! ! !ˆ ‰ ˆ ‰a b_ _ _ _

œ œ œ œn 0 n 0 n 0 n 0

ln 3 ln 5n nn

 diverges. The series  e 4  is a convergent geometric series when ln 3 x ln 5 and the sum is .! a b_

œn 0

x n 1 1
1 e 4 5 e� � � œ� � �a bx x

43.  lim   1   lim   1     lim   1 1  (x 1) 4  x 1 2
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ k k k ku
u 4 (x 1) 4

(x 1) (x 1)4n 1

n

2n 2

n 1 2n

n
�

� #

�� Ê � Ê � Ê � � Ê � �� �
�

#
†

  2 x 1 2  1 x 3; at x 1 we have    1, which diverges; at x 3Ê � � � � Ê � � � œ � œ œ œ! ! !_ _ _

œ œ œn 0 n 0 n 0

( 2)
4 4

4� 2n

n n

n

 we have     1, a divergent series; the interval of convergence is 1 x 3; the series! ! !_ _ _

œ œ œn 0 n 0 n 0

2 4
4 4

2n n

n nœ œ � � �

     is a convergent geometric series when 1 x 3 and the sum is! ! Š ‹ˆ ‰_ _

œ œn 0 n 0

(x )
4

x 1
n

�" �
#

#2n

n œ � � �

 " "

�
� � � � �

1

4 4
4 x 2x 1 3 2x xŠ ‹ ’ “x 4 (x )

4
� "

#

� �" #
# # #œ œ œ

44.  lim   1   lim   1     lim  1 1  (x 1) 9  x 1 3
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ k k k ku
u 9 (x 1) 9

(x 1) (x 1)9n 1

n

2n 2

n 1 2n

n
�

� #

�� Ê � Ê � Ê � � Ê � �� �
�

#
†

  3 x 1 3  4 x 2; when x 4 we have   1 which diverges; at x 2 we haveÊ � � � � Ê � � � œ � œ œ! !_ _

œ œn 0 n 0

( 3)
9

� 2n

n

    which also diverges; the interval of convergence is 4 x 2; the series! !_ _

œ œn 0 n 0

3
9

2n

n œ " � � �

    is a convergent geometric series when 4 x 2 and the sum is! ! Š ‹ˆ ‰_ _

œ œn 0 n 0

(x 1)
9 3

x 1
n

� � #2n

n œ � � �

 " "

�
� � � � �

1

9 9
9 x 2x 1 8 2x xŠ ‹ ’ “x 1

3
9 (x 1)

9
� � � ## # #œ œ œ

45.  lim   1   lim   1  x 2 2  2 x 2 2  0 x 4
n nÄ _ Ä _

¹ ¹ º º ¸ ¸È È Èu
u 2

x 2 2
x 2

n 1

n

n 1

n 1

n
n

�

�

�� Ê � Ê � � Ê � � � � Ê � �
ˆ ‰È ˆ ‰È�

�
†

  0 x 16; when x 0 we have  ( 1) , a divergent series; when x 16 we have  (1) , a divergentÊ � � œ � œ! !_ _

œ œn 0 n 0

n n

 series; the interval of convergence is 0 x 16; the series   is a convergent geometric series when� � ! Š ‹_

œn 0

Èx 2�

#

n

 0 x 16 and its sum is � � œ œ" "

�
�

1

2
4 xŒ � Œ � ÈÈ Èx 2 2 x 2� � �

# #

46.  lim   1   lim   1  ln x 1  1 ln x 1  e x e; when x e  or e we
n nÄ _ Ä _

¹ ¹ ¹ ¹ k ku
u (ln x)

(ln x)n 1

n

n 1

n
�

�

� Ê � Ê � Ê � � � Ê � � œ�" �"

 obtain the series  1  and  ( 1)  which both diverge; the interval of convergence is e x e;  (ln x)! ! !_ _ _

œ œ œn 0 n 0 n 0

n n
1 ln x� � � œ�" "
�

n

 when e x e�" � �
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47.  lim   1   lim   1    lim   1 1  1  x 2
n n nÄ _ Ä _ Ä _

¹ ¹ Š ‹º ºˆ ‰ k ku
u 3 x 1 3 3

x 1 3 x
n 1 n x 1n 1

n

�
# #

#

#

� Ê � Ê � Ê � Ê �� �"
�

�
� #

†

a b

  x 2  2 x 2 ; at x 2 we have  (1)  which diverges; the interval of convergence isÊ � Ê � � � œ „k k È È È È !_
œn 0

n

 2 x 2 ; the series   is a convergent geometric series when 2 x 2 and its sum is� � � � � �È È È È! Š ‹_

œn 0

x 1
3

n
# �

 " "

� #�1

3
xŠ ‹ Š ‹x 1 3 x 1

3 3
# #� � �

œ œ #

48.  lim   1   lim   1  x 1 2  3 x 3 ; when x 3 we
n nÄ _ Ä _

¹ ¹ ¹ ¹ k k È È Èu
u 2

x 1 2
x 1

n 1

n

n 1

n 1

n
n

�
# �

� #� Ê � Ê � � Ê � � � œ „a b a b�
�

#
†

 have  1 , a divergent series; the interval of convergence is 3 x 3 ; the series   is a! !È È Š ‹_ _

œ œn 0 n 0

n � � � x 1
2

n
# �

 convergent geometric series when 3 x 3 and its sum is � � � œ œÈ È " "

� �1

2
3 xŠ ‹ � �x 1

2
2 x 1#� � �#

#

Š ‹ #

49.  lim   1  x 3 2  1 x 5; when x 1 we have  (1)  which diverges;
n Ä _

¹ ¹ k k !(x 3) 2
(x 3)

n�
# �

n 1

n 1 n

n�

� † � Ê � � Ê � � œ
_

œn 1

 when x 5 we have ( 1)  which also diverges; the interval of convergence is 1 x 5; the sum of thisœ � � �!_
œn 1

n

 convergent geometric series is .  If f(x) 1 (x 3) (x 3) (x 3)" " " "

� � # #
#

1

2
x 1 4

n nŠ ‹x 3�
#

œ œ � � � � �á � � � �áˆ ‰
  then f (x) (x 3) n(x 3)  is convergent when 1 x 5, and divergesœ œ � � � �á � � � �á � �2

x 1
n n 1

� # # #
w �" " "ˆ ‰

 when x 1 or 5.  The sum for f (x) is , the derivative of .œ w �
� �

2 2
(x 1) x 1#

50. If f(x) 1 (x 3) (x 3) (x 3)  then f(x) dxœ � � � � �á � � � �á œ" " "
# # �

#
4 x 1

n n 2ˆ ‰ '

 x   .  At x 1 the series  diverges; at x 5œ � � �á � � �á œ œ(x 3) (x 3) (x 3)
4 12 n 1 n 1

n 2� � �" �
# � �

# $ �ˆ ‰ !n 1 _

œn 1

 the series  converges.  Therefore the interval of convergence is 1 x 5 and the sum is!_
œn 1

( 1) 2
n 1
�
�

n

� Ÿ

 2 ln x 1 (3 ln 4), since  dx 2 ln x 1 C, where C 3 ln 4 when x 3.k k k k� � � œ � � œ � œ' 2
x 1�

51. (a) Differentiate the series for sin x to get cos x 1œ � � � � � �á3x 5x 7x 9x 11x
3! 5! 7! 9! 11!

# % ' ) "!

 1  .  The series converges for all values of x sinceœ � � � � � �áx x x x x
! 4! 6! 8! 10!

# % ' ) "!

#

  lim   x   lim  0 1 for all x.
n nÄ _ Ä _

¹ ¹ Š ‹x
(2n 2)! x 2n 1 2n 2

n ! 22n 2�

#8� � �
# "

†

a b a ba bœ œ �

 (b) sin 2x 2x 2xœ � � � � � �á œ � � � � � �á2 x 2 x 2 x 2 x 2 x 8x 32x 128x 512x 2048x
3! 5! 7! 9! 11! 3! 5! 7! 9! 11!

$ $ & & ( ( * * "" "" $ & ( * ""

 (c) 2 sin x cos x 2 (0 1) (0 0 1 1)x 0 1 0 0 1 x 0 0 1 0 0 1 xœ � � � � � � � � �� ˆ ‰ ˆ ‰
† † † † † † † † † †

�" " "
# #

# $
3!

 0 1 0 0 0 0 1 x 0 0 1 0 0 0 0 1 x� � � � � � � � � � �ˆ ‰ ˆ ‰
† † † † † † † † † † †

" " " " " " "
# #

% &
4! 3! 4! 3! 5!

 0 1 0 0 0 0 0 0 1 x 2 x� � � � � � � �á œ � � �á‘ˆ ‰ ’ “† † † † † † †

" " " " "
#

'
6! 4! 3! 5! 3! 5!

4x 16x$ &

 2xœ � � � � � �á2 x 2 x 2 x 2 x 2 x
3! 5! 7! 9! 11!

$ $ & & ( ( * * "" ""

52. (a) e 1 1 x e ; thus the derivative of e  is e  itselfd 2x 3x 4x 5x x x x
x 2! 3! 4! 5! ! 3! 4!

x x x xa b œ � � � � �á œ � � � � �á œ
# $ % # $ %

#

 (b) e  dx e C x C, which is the general antiderivative of e' x x x x x x
3! 4! 5!œ � œ � � � � �á �

# $ % &

#
x

 (c) e 1 x  ; e e 1 1 (1 1 1 1)x 1 1 1 1 x� #
# # #

" "x x x x x
! 3! 4! 5! ! !œ � � � � � �á œ � � � � �
# $ % &

�x x
† † † † † † †

ˆ ‰
 1 1 1 1 x 1 1 1 1 x� � � � � � � � �ˆ ‰ ˆ ‰

† † † † † † † † †

" " " " " " " " " "
# # # #

$ %
3! ! ! 3! 4! 3! ! ! 3! 4!

 1 1 1 1 x 1 0 0 0 0 0� � � � � � �á œ � � � � � �áˆ ‰
† † † † † †

" " " " " " " "
# #

&
5! 4! ! 3! 3! ! 4! 5!
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53. (a) ln sec x C tan x dx x  dxk k Š ‹� œ œ � � � � �á' ' x 2x 17x 62x
3 15 315 2835

$ & ( *

 C; x 0  C 0  ln sec x ,œ � � � � �á � œ Ê œ Ê œ � � � � �áx x x 17x 31x x x x 17x 31x
1 45 2520 14,175 12 45 2520 14,175

# % ' ) "! # % ' ) "!

# # #k k
 converges when x� � �1 1

# #

 (b) sec x x 1 x , converges# #œ œ � � � � �á œ � � � � �ád(tan x)
dx dx 3 15 315 2835 3 45 315

d x 2x 17x 62x 2x 17x 62xŠ ‹$ & ( * % ' )

 when x� � �1 1

# #

 (c) sec x (sec x)(sec x) 1 1#
# #œ œ � � � �á � � � �áŠ ‹Š ‹x 5x 61x x 5x 61x

24 720 24 720

# % ' # % '

 1 x x xœ � � � � � � � � � �áˆ ‰ ˆ ‰ ˆ ‰" " "
# #

# % '5 5 61 5 5 61
24 4 24 720 48 48 720

 1 x , xœ � � � � �á � � �#
# #

2x 17x 62x
3 45 315

% ' )
1 1

54. (a) ln sec x tan x C sec x dx 1  dxk k Š ‹� � œ œ � � � �á' ' x 5x 61x
2 24 720

# % '

 x C; x 0  C 0  ln sec x tan xœ � � � � �á � œ Ê œ Ê �x x 61x 277x
6 24 5040 72,576

$ & ( * k k
 x , converges when xœ � � � � �á � � �x x 61x 277x

6 24 5040 72,576

$ & ( *
1 1

# #

 (b) sec x tan x 1 x , convergesœ œ � � � �á œ � � � �ád(sec x)
dx dx 24 720 6 120 1008

d x 5x 61x 5x 61x 277xŠ ‹# % ' $ & (

#

 when x� � �1 1

# #

 (c) (sec x)(tan x) 1 xœ � � � �á � � � �áŠ ‹Š ‹x 5x 61x x 2x 17x
24 720 3 15 315

# % ' $ & (

#

 x x x x x ,œ � � � � � � � � � �á œ � � � �áˆ ‰ ˆ ‰ ˆ ‰" " " "
#

$ & (
3 15 6 24 315 15 72 720 6 120 1008

2 5 17 5 61 5x 61x 277x$ & (

 x� � �1 1

# #

55. (a) If f(x)  a x , then f (x)  n(n 1)(n 2) (n (k 1)) a x  and f (0) k!aœ œ � � â � � œ! !_ _

œ œn 0 n k
n n k

n k n k kÐ Ñ � Ð Ñ

  a ; likewise if f(x)  b x , then b   a b  for every nonnegative integer kÊ œ œ œ Ê œk n k k k
f (0) f (0)

k! k!
nÐ Ñ Ð Ñk k!_

œn 0

 (b) If f(x)  a x  0 for all x, then f (x) 0 for all x  from part (a) that a 0 for every nonnegative integer kœ œ œ Ê œ!_
œn 0

n k
n kÐ Ñ

10.8  TAYLOR AND MACLAURIN SERIES

 1. f(x) e , f (x) 2e , f (x) 4e , f (x) 8e ; f(0) e , f (0) 2, f (0) 4,  f (0) 8  P (x) 1,œ œ œ œ œ œ " œ œ œ Ê œ2x 2x 2x 2x 2 0w ww www w ww www
!

a b
 P (x) 1 2x, P (x) 1 x 2x , P (x) 1 x 2x x" # $

# #œ � œ � � œ � � � 4
3

3

 2. f(x) sin x, f (x) cos x , f (x) sin x , f (x) cos x; f(0) sin 0 0, f (0) 1, f (0) 0,  f (0) 1œ œ œ � œ � œ œ œ œ œ �w ww www w ww www

   P (x) 0, P (x) x, P (x) x, P (x) x xÊ œ œ œ œ �! " # $
1
6

3

 3. f(x) ln x, f (x) , f (x) , f (x) ; f(1) ln 1 0, f (1) 1, f (1) 1,  f (1) 2  P (x) 0,œ œ œ � œ œ œ œ œ � œ Ê œw ww www w ww www" "
!x x x

2
# $

 P (x) (x 1), P (x) (x 1) (x 1) , P (x) (x 1) (x 1) (x 1)" # $
" " "
# #

# # $œ � œ � � � œ � � � � �3

 4. f(x) ln (1 x), f (x) (1 x) , f (x) (1 x) , f (x) 2(1 x) ; f(0) ln 1 0,œ � œ œ � œ � � œ � œ œw �" ww �# www �$"
�1 x

 f (0) 1, f (0) (1) 1, f (0) 2(1) 2 P (x) 0, P (x) x, P (x) x , P (x) xw ww �# www �$
! " # $# #œ œ œ � œ � œ œ Ê œ œ œ � œ � �1 x x x

1 3

# # $

 5. f(x) x , f (x) x , f (x) 2x , f (x) 6x ; f(2) , f (2) , f (2) , f (x)œ œ œ � œ œ � œ œ � œ œ �" " " "�" w �# ww �$ www �% w ww www
#x 4 4 8

3

 P (x) , P (x) (x 2), P (x) (x 2) (x 2) ,Ê œ œ � � œ � � � �! " #
" " " " " "
# # #

#
4 4 8

 P (x) (x 2) (x 2) (x 2)$
" " " "
#

# $œ � � � � � �4 8 16
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 6. f(x) (x 2) , f (x) (x 2) , f (x) 2(x 2) , f (x) 6(x 2) ; f(0) (2) , f (0) (2)œ � œ � � œ � œ � � œ œ œ ��" w �# ww �$ www �% �" w �#"
#

 , f (0) 2(2) , f (0) 6(2)   P (x) , P (x) , P (x) ,œ � œ œ œ � œ � Ê œ œ � œ � �" " " " "ww �$ www �%
! " ## # #4 4 8 4 4 8

3 x x x#

 P (x)$
"
#œ � � �x x x

4 8 16

# $

 7. f(x) sin x, f (x) cos x, f (x) sin x, f (x) cos x; f sin , f cos ,œ œ œ � œ � œ œ œ œw ww www w
# #

ˆ ‰ ˆ ‰1 1 1 1

4 4 4 4
2 2È È

 f sin , f cos   P , P (x) x ,ww www
# # # # #! "ˆ ‰ ˆ ‰ ˆ ‰1 1 1 1 1

4 4 4 4 4
2 2 2 2 2œ � œ � œ � œ � Ê œ œ � �

È È È È È
 P (x) x x , P (x) x x x# $# # # # #

# # $
œ � � � � œ � � � � � �

È È È È È È È2 2 2 2 2 2 2
4 4 4 4 4 4 1 4

ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰1 1 1 1 1

 8. f(x) tan x, f (x) sec  x, f (x) 2sec  x tan x, f (x) 2sec  x 4sec  x tan  x; f tan 1 ,œ œ œ œ � œ œw ww www2 2 4 2 2
4 4

ˆ ‰1 1

 f sec 2 , f 2sec tan 4 , f 2sec  4sec  tan 16 P (x) 1 ,w ww www
!ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰1 1 1 1 1 1 1 1 1

4 4 4 4 4 4 4 4 4
2 2 4 2 2œ œ œ œ œ � œ Ê œ

 P (x) 1 2 x , P (x) 1 2 x 2 x , P (x) 1 2 x 2 x x" # $œ � � œ � � � � œ � � � � � �ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰1 1 1 1 1 1

4 4 4 4 4 3 4
2 2 38

 9. f(x) x x , f (x) x , f (x) x , f (x) x ; f(4) 4 2,œ œ œ œ � œ œ œÈ ˆ ‰ ˆ ‰ ˆ ‰ È"Î# w �"Î# ww �$Î# www �&Î#" "
# 4 8

3

 f (4) 4 , f (4) 4 ,f (4) 4   P (x) 2, P (x) 2 (x 4),w �"Î# ww �$Î# www �&Î#" " " " "
# ! "œ œ œ � œ � œ œ Ê œ œ � �ˆ ‰ ˆ ‰ ˆ ‰

4 4 32 8 256 4
3 3

 P (x) 2 (x 4) (x 4) , P (x) 2 (x 4) (x 4) (x 4)# $
" " " " "# # $

#œ � � � � œ � � � � � �4 64 4 64 51

10. f(x) (1 x) , f (x) (1 x) , f (x) (1 x) , f (x) (1 x) ; f(0) (1) 1,œ � œ � � œ � � œ � � œ œ"Î# w �"Î# ww �$Î# www �&Î# "Î#" "
# 4 8

3

 f (0) (1) , f (0) (1) , f (0) (1)   P (x) 1,w �"Î# ww �$Î# www �&Î#" " " "
# # !œ � œ � œ � œ � œ � œ � Ê œ4 4 8 8

3 3

 P (x) 1 x, P (x) 1 x x , P (x) 1 x x x" # $
" " " " "# # $œ � œ � � œ � � �2 2 8 2 8 16

1

11. f(x) e , f (x) e , f (x) e , f (x) e   f (x) 1 e ; f(0) e , f (0) 1,œ œ � œ œ � Ê á œ � œ œ " œ �� w � ww � www � � � wx x x x x 0kÐ Ñk a b a b
 f (0) 1,  f (0) 1, f (0) ( 1)  e 1 x x x  xww www � # �œ œ � á ß œ � Ê œ � � � �á œÐ Ñk k x 3 n1 1

2 6 n!
( 1)!_

œn 0

n

12. f(x) x e , f (x) x e e , f (x) x e 2e , f (x) x e 3e   f (x) x e k e ; f(0) 0 e 0,œ œ � œ � œ � Ê á œ � œ œx x x x x x x x x 0w ww www Ð Ñk a b a b
 f (0) 1, f (0) 2,  f (0) 3,  f (0) k  x x x  xw ww www #

�œ œ œ á ß œ Ê � � �á œÐ Ñk 1 1
2 n 1 !

3 n!_
œn 0

a b

13. f(x) (1 x)   f (x) (1 x) , f (x) 2(1 x) , f (x) 3!(1 x)    f (x)œ � Ê œ � � œ � œ � � Ê á�" w �# ww �$ www �% Ð Ñk

 ( 1) k!(1 x) ; f(0) 1, f (0) 1, f (0) 2, f (0) 3!, f (0) ( 1) k!œ � � œ œ � œ œ � á ß œ �k k 1� � w ww www Ð Ñk k

  1 x x x  ( x)  ( 1) xÊ � � � �á œ � œ �# $ ! !_ _

œ œn 0 n 0

n n n

14. f(x)   f (x) , f (x) 6(1 x) , f (x) 18(1 x)    f (x) 3 k! (1 x) ; f(0) 2,œ Ê œ œ � œ � Ê á œ � œ2 x 3
1 x (1 x)
�
� �

w ww �$ www �%
#

Ð Ñ � �k k 1a b
 f (0) 3, f (0) 6, f (0) 18, f (0) 3 k!  2 3x 3x 3x 2  3xw ww www # $œ œ œ á ß œ Ê � � � �á œ �Ð Ñk a b !_

œn 1

n

15. sin x    sin 3x   3xœ Ê œ œ œ � � �á! ! !_ _ _

œ œ œn 0 n 0 n 0

( ) x ( ) (3x) ( ) 3 x
( n 1)! ( n 1)! ( n 1)! 3! 5!

3 x 3 x�" �" �"
# � # � # �

n 2n 1 n 2n 1 n 2n 1 2n 1� � � � $ $ & &

16. sin x    sin    œ Ê œ œ œ � � �á! ! !_ _ _

œ œ œn 0 n 0 n 0

( ) x ( ) x
( n 1)! ( n 1)! (2n 1)! 2 3! 2 5!

x x x x( )�" �"
# � # # � # � #

�"n 2n 1 n 2n 1n x 2n 1

2n 1

� �
#

�

� $ &

$ &ˆ ‰
† †

17. 7 cos ( x) 7 cos x 7  7 , since the cosine is an even function� œ œ œ � � � �á!_
œn 0

( ) x
(2n)! ! 4! 6!

7x 7x 7x�"
#

n 2n # % '
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18. cos x     5 cos x 5  5œ Ê œ œ � � � �á! !_ _

œ œn 0 n 0

( 1) x ( 1) ( x)
(2n)! ( n)! 2! 4! 6!

5 x 5 x 5 x� �
#

n 2n n 2n

1
1 1 1 1

# # % % ' '

19. cosh x 1 x 1 x 1œ œ � � � � �á � � � � � �á œ � � � �áe e x x x x x x x x x
! 3! 4! ! 3! 4! ! 4! 6!

x x� "
# # # # #

#� # $ % # $ % # % '’ “Š ‹ Š ‹
  œ !_

œn 0

x
(2n)!

2n

20. sinh x 1 x 1 x xœ œ � � � � �á � � � � � �á œ � � � �áe e x x x x x x x x x
! 3! 4! ! 3! 4! 3! 5! 6!

x x� "
# # # #

� # $ % # $ % $ & '’ “Š ‹ Š ‹
  œ !_

œn 0

x
(2n 1)!

2n 1�

�

21. f(x) x 2x 5x 4  f (x) 4x 6x 5, f (x) 12x 12x, f (x) 24x 12, f (x) 24œ � � � Ê œ � � œ � œ � œ% $ w $ # ww # www Ð Ñ4

  f (x) 0 if n 5; f(0) 4, f (0) 5, f (0) 0, f (0) 12, f (0) 24, f (0) 0 if n 5Ê œ   œ œ � œ œ � œ œ  Ð Ñ w ww www Ð Ñ Ð Ñn 4 n

  x 2x 5x 4 4 5x x x x 2x 5x 4Ê � � � œ � � � œ � � �% $ $ % % $12 24
3! 4!

22. f(x)   f (x) ; f (x) ;  f (x)   f (x) ; f(0) 0, f (0) 0, f (0) 2,œ Ê œ œ œ Ê œ œ œ œx 2x x 2 6
x 1 x 1 x 1 x 1 x 1

n 1 n# #

��
w ww www Ð Ñ w ww� �

� � � �

� xa b a b a b a ba b
2 3 4 n 1

n

 f (0) 6, f (0) 1 n  if n 2  x x x x  1 xwww Ð Ñ #œ � œ � x   Ê � � � � Þ Þ Þ œ �n 3 4 5 nn na b a b!_
œn 2

23. f(x) x 2x 4  f (x) 3x 2, f (x) 6x, f (x) 6  f (x) 0 if n 4; f(2) 8, f (2) 10,œ � � Ê œ � œ œ Ê œ   œ œ$ w # ww www Ð Ñ wn

 f (2) 12, f (2) 6, f (2) 0 if n 4  x 2x 4 8 10(x 2) (x 2) (x 2)ww www Ð Ñ $ # $œ œ œ   Ê � � œ � � � � � �n 12 6
2! 3!

 8 10(x 2) 6(x 2) (x 2)œ � � � � � �# $

24. f(x) 2x x 3x 8  f (x) 6x 2x 3, f (x) 12x 2, f (x) 12  f (x) 0 if n 4; f(1) 2,œ � � � Ê œ � � œ � œ Ê œ   œ �$ # w # ww www Ð Ñn

 f (1) 11, f (1) 14, f (1) 12, f (1) 0 if n 4  2x x 3x 8w ww www Ð Ñ $ #œ œ œ œ   Ê � � �n

 2 11(x 1) (x 1) (x 1) 2 11(x 1) 7(x 1) 2(x 1)œ � � � � � � � œ � � � � � � �14 12
2! 3!

# $ # $

25. f(x) x x 1  f (x) 4x 2x, f (x) 12x 2, f (x) 24x, f (x) 24, f (x) 0 if n 5;œ � � Ê œ � œ � œ œ œ  % # w $ ww # www Ð Ñ Ð Ñ4 n

 f( 2) 21, f ( 2) 36, f ( 2) 50, f ( 2) 48, f ( 2) 24, f ( 2) 0 if n 5  x x 1� œ � œ � � œ � œ � � œ � œ   Ê � �w ww www Ð Ñ Ð Ñ % #4 n

 21 36(x 2) (x 2) (x 2) (x 2) 21 36(x 2) 25(x 2) 8(x 2) (x 2)œ � � � � � � � � œ � � � � � � � �50 48 24
2! 3! 4!

# $ % # $ %

26. f(x) 3x x 2x x 2  f (x) 15x 4x 6x 2x, f (x) 60x 12x 12x 2,œ � � � � Ê œ � � � œ � � �& % $ # w % $ # ww $ #

 f (x) 180x 24x 12, f (x) 360x 24, f (x) 360, f (x) 0 if n 6; f( 1) 7,www # Ð Ñ Ð Ñ Ð Ñœ � � œ � œ œ   � œ �4 5 n

 f ( 1) 23, f ( 1) 82, f ( 1) 216, f ( 1) 384, f ( 1) 360, f ( 1) 0 if n 6w ww www Ð Ñ Ð Ñ Ð Ñ� œ � œ � � œ � œ � � œ � œ  4 5 n

  3x x 2x x 2 7 23(x 1) (x 1) (x 1) (x 1) (x 1)Ê � � � � œ � � � � � � � � � � �& % $ # # $ % &82 216 384 360
2! 3! 4! 5!

 7 23(x 1) 41(x 1) 36(x 1) 16(x 1) 3(x 1)œ � � � � � � � � � � �# $ % &

27. f(x) x   f (x) 2x , f (x) 3! x , f (x) 4! x   f (x) ( 1) (n 1)! x ;œ Ê œ � œ œ � Ê œ � ��# w �$ ww �% www �& Ð Ñ � �n n n 2

 f(1) 1, f (1) 2, f (1) 3!, f (1) 4!, f (1) ( 1) (n 1)! œ œ � œ œ � œ � � Êw ww www Ð Ñ "n n
x#

 1 2(x 1) 3(x 1) 4(x 1)  ( 1) (n 1)(x 1)œ � � � � � � �á œ � � �# $ !_
œn 0

n n

28. f(x)  f (x) 3(1 x) , f (x) 12(1 x) , f (x) 60 (1 x)   f (x) (1 x) ;œ Ê œ � œ � œ � Ê œ �1
1 x

4 5 6 n n 3n 2 !
2a b a b

�
w � ww � www � Ð Ñ � ��

3

 f 0 1, f 0 3, f 0 12, f 0 60, , f 0  1 3x 6x 10xa b a b a b a b a bœ œ œ œ á œ Ê œ � � � �áw ww www Ð Ñ #�

�
n 3n 2 !

2
1

1 x
a b a b3

   xœ !_
œn 0

a ba bn 2 n 1
2

n� �
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29. f(x) e   f (x) e , f (x) e   f (x) e ; f(2) e , f (2) e ,  f (2) eœ Ê œ œ Ê œ œ œ á œx x x n x nw ww Ð Ñ # w # Ð Ñ #

  e e e (x 2) (x 2) (x 2)   (x 2)Ê œ � � � � � � �á œ �x ne e e
3! n!

# # # $
#

# $ #!_
œn 0

30. f(x) 2   f (x) 2  ln 2, f (x) 2 (ln 2) , f (x) 2 (ln 2)   f (x) 2 (ln 2) ; f(1) 2, f (1) 2 ln 2,œ Ê œ œ œ Ê œ œ œx x x x 3 n x nw ww # www Ð Ñ w

 f (1) 2(ln 2) , f (1) 2(ln 2) , , f (1) 2(ln 2)ww # www $ Ð Ñœ œ á œn n

 2 2 (2 ln 2)(x 1) (x 1) (x 1)  Ê œ � � � � � � �á œx 32(ln 2) 2(ln 2) 2(ln 2) (x 1)
3! n!

#

#
# �3 n n!_

œn 0

31. f(x) cos 2x , f (x) 2 sin 2x , f (x) 4 cos 2x , f (x) 8 sin 2x ,œ � œ � � œ � � œ �ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰1 1 1 1

2 2 2 2
w ww www

 f x 2  cos 2x  f x 2 sin 2x  . . ; f 1, f 0,  f 4, f 0, f 2 ,a b a b a b4 4 5 5 4 4
2 2 4 4 4 4 4a b a bˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰œ � ß œ � � ß œ � œ œ œ œ1 1 1 1 1 1 1w ww www

 f 0, . . ., f 1 2  cos 2x 1 2 x x . . .a b5 2n 2n
4 4 2 4 3 4

n 2 42ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰a b1 1 1 1 1œ œ � Ê � œ � � � � � �Ð Ñ

   xœ �! ˆ ‰_

œn 0

a ba b�
x

1 2
2n 4

2nn 2n
1

32. f(x) x 1, f (x) x 1 , f (x) x 1 , f (x) x 1 , f (x) x 1 , . . .;œ � œ � œ � � œ � œ � �È a b a b a b a bw ww www� Î � Î � Î � Î1 1 3 15
2 4 8 16

1 2 3 2 5 2 7 24a b
 f(0) 1, f (0) , f (0) , f (0) , f (0) , . . . x 1 1 x x x xœ œ œ � œ œ � Ê � œ � � � � � Þ Þ Þw ww www1 1 3 15 1 1 1 5

2 4 8 16 2 8 16 128
4 2 3 4a b È

33. The Maclaurin series generated by cos x is  x  which converges on ,  and the Maclaurin series generated! a b_

œn 0

a ba b�
x

1
2n

2n
n

�_ _

 by  is 2  x  which converges on 1, 1 . Thus the Maclaurin series generated by  f x cos x  is given by2 2
1 x 1 x

n
� �

! a b a b_

œn 0
� œ �

  x 2  x 1 2x x  which converges on the intersection of ,  and 1, 1 , so the! ! a b a b_ _

œ œn 0 n 0

a ba b�
x

1
2n 2

2n n 25
n

� œ � � � � Þ Þ Þ Þ �_ _ �

 interval of convergence is 1, 1 .a b�

34. The Maclaurin series generated by e  is   which converges on , . The Maclaurin series generated byx x
n

! a b_

œn 0

n

x �_ _

 f x 1 x x e  is given by 1 x x   1 x x  which converges on , a b a b a b a b!œ � � � � œ � � Þ Þ Þ Þ �_ _ Þ2 x 2 2 3x 1 2
n 2 3

_

œn 0

n

x

35. The Maclaurin series generated by sin x is  x  which converges on ,  and the Maclaurin series! a b_

œn 0

a ba b�
� x

�1
2n 1

2n 1
n

�_ _

 generated by ln 1 x  is  x  which converges on 1, 1 . Thus the Maclaurin series genereated bya b a b!� �
_

œn 1

a b�1
n

n
n 1�

 f x sin x ln 1 x  is given by  x  x x x x  which converges ona b a b Œ �Œ �! !œ † � œ � � � Þ Þ Þ Þ
_ _

œ œn 0 n 1

a b a ba b� �
� x

�1 1
2n 1 n 2 6

2n 1 n 2 3 41 1
n n 1�

 the intersection of ,  and 1, 1 , so the interval of convergence is 1, 1 .a b a b a b�_ _ � �

36. The Maclaurin series generated by sin x is  x  which converges on , . The Maclaurin series! a b_

œn 0

a ba b�
� x

�1
2n 1

2n 1
n

�_ _

 genereated by f x x sin x is given by x  x x  x  xa b Œ � Œ �Œ �! ! !œ œ2 2n 1 2n 1 2n 11 1 1
2n 1 2n 1 2n 1

2
_ _ _

œ œ œn 0 n 0 n 0

a b a b a ba b a b a b� � �
� x � x � x

� � �
n n n

 x x x . . . which converges on , œ � � � �_ _ Þ3 5 71 2
3 45 a b

37. If e  (x a)  and f(x) e , we have f (a) e  f or all n 0, 1, 2, 3, x œ � œ œ œ á!_
œn 0

f (a)
n!

n x n aÐ Ñn
Ð Ñ

  e e e 1 (x a)  at x aÊ œ � � �á œ � � � �á œx a a(x a) (x a) (x a) (x a)
0! 1! 2! 2!’ “ ’ “� � � �! " # #
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38. f(x) e   f (x) e  for all n  f (1) e for all n 0, 1, 2, œ Ê œ Ê œ œ áx n x nÐ Ñ Ð Ñ

  e e e(x 1) (x 1) (x 1) e 1 (x 1)Ê œ � � � � � � �á œ � � � � �áx e e
! 3! 2! 3!

(x 1) (x 1)
#

# $ � �’ “# $

39. f(x) f(a) f (a)(x a) (x a) (x a)   f (x)œ � � � � � � �á Êw # $ w
#

f (a) f (a)
3!

ww www

 f (a) f (a)(x a) 3(x a)   f (x) f (a) f (a)(x a) 4 3(x a)œ � � � � �á Ê œ � � � � �áw ww # ww ww www #f (a) f (a)
3! 4!

www Ð Ñ4

†

  f (x) f (a) f (a)(x a) (x a)Ê œ � � � � �áÐ Ñ Ð Ñ Ð � Ñ #
#

n n n 1 f (a)Ð � Ñn 2

  f(a) f(a) 0, f (a) f (a) 0, , f (a) f (a) 0Ê œ � œ � á œ �w w Ð Ñ Ð Ñn n

40. E(x) f(x) b b (x a) b (x a) b (x a) b (x a)œ � � � � � � � �á � �! " # $
# $

n
n

  0 E(a) f(a) b   b f(a); from condition (b),Ê œ œ � Ê œ! !

 lim   0
x aÄ

f(x) f(a) b (x a) b (x a) b (x a) b (x a)
(x a)

� � � � � � � �á� �
�

" # $
# $

n
n

n œ

   lim   0Ê œ
x aÄ

f (x) b 2b (x a) 3b (x a) nb (x a)
n(x a)

w # �
" # $

�

� � � � � �á� �
�

n
n 1

n 1

  b f (a)   lim   0Ê œ Ê œ"
w � � � �á� �" �

� �x aÄ
f (x) 2b 3! b (x a) n(n )b (x a)

n(n 1)(x a)

ww �
# $

�

n
n 2

n 2

  b f (a)   lim   0Ê œ Ê œ#
"
# � �# �

ww � �á� � � �

x aÄ
f (x) 3! b n(n 1)(n 2)b (x a)

n(n 1)(n )(x a)

www �
$

�

n
n 3

n 3

 b f (a)   lim   0  b f (a); therefore,œ œ Ê œ Ê œ$
" "www Ð Ñ�
3! n! n!

f (x) n! b
n

n
x aÄ

Ð Ñn
n

 g(x) f(a) f (a)(x a) (x a) (x a) P (x)œ � � � � �á � � œw #f (a) f (a)
2! n!

n
n

ww Ð Ñn

41. f(x) ln (cos x)  f (x) tan x and f (x) sec x; f(0) 0, f (0) 0, f (0) 1 L(x) 0 and Q(x)œ Ê œ � œ � œ œ œ � Ê œ œ �w ww # w ww x
2

#

42. f(x) e   f (x) (cos x)e  and f (x) ( sin x)e (cos x) e ; f(0) 1, f (0) 1, f (0) 1œ Ê œ œ � � œ œ œsin x sin x sin x sin xw ww # w ww

 L(x) 1 x and Q(x) 1 xÊ œ � œ � � x#

#

43. f(x) 1 x   f (x) x 1 x  and f (x) 1 x 3x 1 x ; f(0) 1, f (0) 0,œ � Ê œ � œ � � � œ œa b a b a b a b# w # ww # # # w�"Î# �$Î# �$Î# �&Î#

 f (0) 1  L(x) 1 and Q(x) 1ww
#œ Ê œ œ � x#

44. f(x) cosh x  f (x) sinh x and f (x) cosh x; f(0) 1, f (0) 0, f (0) 1  L(x) 1 and Q(x) 1œ Ê œ œ œ œ œ Ê œ œ �w ww w ww
#
x#

45. f(x) sin x  f (x) cos x and f (x) sin x; f(0) 0, f (0) 1, f (0) 0  L(x) x and Q(x) xœ Ê œ œ � œ œ œ Ê œ œw ww w ww

46. f(x) tan x  f (x) sec x and f (x) 2 sec x tan x; f(0) 0, f (0) 1, f 0  L(x) x and Q(x) xœ Ê œ œ œ œ œ Ê œ œw # ww # w ww

10.9  CONVERGENCE OF TAYLOR SERIES

 1. e 1 x     e 1 ( 5x) 1 5x   x 5xx x 5 x 5 x
! n! ! ! 3! n!

( 5x) ( 1) 5 xœ � � �á œ Ê œ � � � �á œ � � � �á œ
# # # $ $#

# # #
� � �! !_ _

œ œn 0 n 0

n n n n

 2. e 1 x     e 1 1  x x 2x x x x x x
! n! ! 2 ! 2 3! 2 n!

( 1) xœ � � �á œ Ê œ � � �á œ � � � �á œ
# # $

#

#

# $# # # # #
� Î � � �! !ˆ ‰_ _

œ œn 0 n 0

n x n n

n

ˆ ‰

 3. sin x x    5 sin ( x) 5 ( x)œ � � �á œ Ê � œ � � � �á œx x
3! 5! ( n 1)! 3! 5! ( n 1)!

( 1) x ( x) ( x) 5( 1) x$ & � $ & � �! !’ “_ _

œ œn 0 n 0

� � � �
# � # �

n 2n 1 n 1 2n 1

 4. sin x x    sin œ � � �á œ Ê œ � � � �á œx x x x
3! 5! ( n 1)! 3! 5! 7! 2 ( n 1)!

( 1) x ( 1) x$ & � � �
# # #

$ & (

�
! !_ _

œ œn 0 n 0

� �
# � # # # �

n 2n 1 n 2n 1 2n 1x x x

2n 1
1 1 1ˆ ‰ ˆ ‰ ˆ ‰1 1 1
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 5. cos x    cos 5x   1œ Ê œ œ œ � � � �á! ! !_ _ _

œ œ œn 0 n 0 n 0

( 1) x ( 1) 5 x
(2n)! (2n)! (2n)! ! 4! 6!

2 ( 1) 5x 25x 625x 15625x� ��

#

n 2n n 2n 4nn 2 2n
4 8 12� ‘

 6. cos x   cos cos     œ Ê œ œ œ! ! !Š ‹ Š ‹Œ �_ _

œ œn 0 n 0

a b È
a b Œ �Š ‹

�
# #

"Î# � _

œ

�1 x
(2n)! ( n)! 2 (2n)!

x x
2

1

n 0

( 1) xn 2n
n x

2n

n 3n

n

$Î# $

$

#

"Î#

 1œ � � � �áx x x
2 2! 2 4! 2 6!

$ ' *

# $
† † †

 7. ln 1 x  ln 1 x   x . . .a b a b! ! !� œ Ê � œ œ œ � � � �
_ _ _

œ œ œn 1 n 1 n 1

a b a ba b ˆ ‰� ��1 x 1 x
n n n 2 3 4

2 21 x x x x
n 1 n 1n 2nn 1 2 n

4 6 8� �

�

 8. tan x  tan 3x   3x 9x x x . . .� �� �
� �

�1 1 4 4 12 20 281 x 1 3 x
2n 1 2n 1 n 5 7

1 3x 243 2187œ Ê œ œ œ � � � �! ! !a b_ _ _

œ œ œn 0 n 0 n 0

a b a ba b ˆ ‰n n2n 1 2n 1 8n 4n 4 2n 1
� � �

�

 9.  1 x  1 x  1 x 1 x x x . . .1 1 3 3 3 9 27
1 x 4 4 4 16 64

n n nn 3 3n 3 6 9
1 x

n n
� �

œ � Ê œ � œ � œ � � � �! ! !a b a b a bˆ ‰ ˆ ‰_ _ _

œ œ œn 0 n 0 n 0
3
4

3

10.  x  x  x x x x . . .1 1 1 1 1 1
1 x 2 x 4 8 16

n n 2 3
1 x

n n 1
� � # # # # #

" " " " "
�

�
œ Ê œ œ œ œ � � � �! ! !ˆ ‰ ˆ ‰_ _ _

œ œ œn 0 n 0 n 0
"

#

11. e     xe x     x xx xx x x x x x
n! n! n! ! 3! 4!

n 0
œ Ê œ œ œ � � � � �á! ! !Œ �_ _

œ œn 0 n 0

n n n 1
_

œ

#
#

� $ % &

12. sin x    x  sin x x    xœ Ê œ œ œ � � � �á! ! !Œ �_ _ _

œ œ œn 0 n 0 n 0

( 1) x ( 1) x ( 1) x
(2n 1)! ( n 1)! (2n 1)! 3! 5! 7!

x x x� � �
� # � �

# # $
n 2n 1 n 2n 1 n 2n 3� � � & ( *

13. cos x    1 cos x 1   1 1œ Ê � � œ � � œ � � � � � � � �á! !_ _

œ œn 0 n 0

( 1) x ( 1) x
(2n)! ( n)! 2 4! 6! 8! 10!

x x x x x x x x� �
# # # #

n 2n n 2n# # # # % ' ) "!

 œ � � � �á œx x x x
4! 6! 8! 10! ( n)!

( 1) x% ' ) "! !_
œn 2

�
#

n 2n

14. sin x    sin x x   xœ Ê � � œ � �! !Œ �_ _

œ œn 0 n 0

( 1) x ( 1) x
(2n 1)! 3! ( n 1)! 3!

x x� �
� # �

n 2n 1 n 2n 1� �$ $

 x x  œ � � � � � �á � � œ � � � �á œŠ ‹ !x x x x x x x x x x
3! 5! 7! 9! 11! 3! 5! 7! 9! 11! (2n 1)!

( 1) x$ & ( * "" $ & ( * "" �
_

œn 2

�
�

n 2n 1

15. cos x    x cos x x   xœ Ê œ œ œ � � � �á! ! !_ _ _

œ œ œn 0 n 0 n 0

( 1) x ( 1) ( x) ( ) x
(2n)! ( n)! ( n)! 2! 4! 6!

x x x� � �"
# #

n 2n n 2n n 2n 2n 1

1
1 1 1 1 1

� # $ % & ' (

16. cos x    x  cos x x    xœ Ê œ œ œ � � � �á! ! !a b_ _ _

œ œ œn 0 n 0 n 0

( 1) x ( ) x
(2n)! ( n)! ( n)! 2! 4! 6!

( 1) x x x x� �"# # # #�
# #

n 2n n 4n 2n 2na b# � ' "! "%

17. cos x  1# " " " " "
# # # # # #

�œ � œ � œ � � � � � �ácos 2x ( 1) (2x) (2x) (2x) (2x) (2x)
(2n)! 2! 4! 6! 8!

! ’ “_

œn 0

n 2n # % ' )

 1 1  1  œ � � � � �á œ � œ �(2x) (2x) (2x) (2x) ( 1) (2x) ( 1)  2  x
2 2! 2 4! 2 6! 2 8! 2 (2n)! (2n)!

# % ' ) �

† † † † †

! !_ _

œ œn 1 n 1

� �n 2n n 2n 1 2n

18. sin x  cos 2x 1# � " " " "
# # # # # #œ œ � œ � � � � �á œ � � �áˆ ‰ Š ‹1 cos 2x (2x) (2x) (2x) (2x) (2x) (2x)

! 4! 6! 2 2! 2 4! 2 6!

# % ' # % '

† † †

   œ œ! !_ _

œ œn 1 n 1

( 1) (2x) ( 1)  2  x
(2n)! (2n)!

� �
#

n 1 2n n 2n 1 2n� �

†
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19. x x  (2x) 2 x x 2x 2 x 2 xx
1 2x 1 2x

n n n 2#

� �
# # � # $ # % $ &"œ œ œ œ � � � �áˆ ‰ ! !_ _

œ œn 0 n 0

20. x ln (1 2x) x   2x� œ œ œ � � � �á! !_ _

œ œn 1 n 1

( 1) (2x) ( 1) 2 x
n n 4 5

2 x 2 x 2 x� � #
#

n 1 n n 1 n n 1� � � # $ $ % % &

21.  x 1 x x x   1 2x 3x  nx  (n 1)x" " "
� � �

# $ # �
_

œ
1 x dx 1 x (1 x)

n n 1 nd

n 0
œ œ � � � �á Ê œ œ � � �á œ œ �! ! !ˆ ‰_ _

œ œn 0 n 1
#

22. 1 2x 3x 2 6x 12x n(n 1)x2 d d d
1 x dx 1 x dx (1 x) dx

n 2a b�
" "
� �

# # �
$

#

# #œ œ œ � � �á œ � � �á œ �ˆ ‰ Š ‹ a b !_
œn 2

  (n 2)(n 1)xœ � �!_
œn 0

n

23. tan x x x x x x tan x x x x x x� �1 3 5 7 1 2 2 2 2 21 1 1 1 1 1
3 5 7 3 5 7

3 5 7
œ � � � � Þ Þ Þ Ê œ � � � � Þ Þ ÞŠ ‹a b a b a b

 x x x x  œ � � � � Þ Þ Þ œ3 7 11 151 1 1
3 5 7 2n 1

1 x!_
œn 1

a b�
�

n 4n 1�

24.  sin x x sin x cos x sin 2x 2xœ � � � �á Ê † œ œ � � � �áx x x
3! 5! 7! 3! 5! 7!

2x 2x 2x3 5 7 3 5 7
" "
# #Š ‹a b a b a b

 x x  œ � � � �á œ � � � �á œ4 x 16 x 64 x 2 x 2x 4 x
3! 5! 7! 3 15 315 ( n 1)!

( 1) 2 x3 5 7 3 5 7 n 2n 2n 1!_
œn 0

�
# �

�

25. e 1 x  and 1 x x x ex 2 3 xx x 1 1
2! 3! 1 x 1 xœ � � � �á œ � � � �á Ê �

2 3

� �

 1 x 1 x x x 2 x x x 1 xœ � � � �á � � � � �á œ � � � �á œ � �Š ‹ a b a b!ˆ ‰x x 3 5 25 1
2! 3! 2 6 24 n!

2 3 2 3 4 nn2 3
_

œn 0

26. sin x x  and cos x 1 cos x sin xœ � � � �á œ � � � �á Ê �x x x x x x
3! 5! 7! 2! 4! 6!

3 5 7 2 4 6

 1 x 1 xœ � � � �á � � � � �á œ � � � � � � � �áŠ ‹ Š ‹x x x x x x x x x x x x
2! 4! 6! 3! 5! 7! 2! 3! 4! 5! 6! 7!

2 4 6 3 5 7 2 3 4 5 6 7

 œ �!Š ‹_

œn 0

( 1) x ( 1) x
(2n)! ( n 1)!
� �

# �

n 2n n 2n 1�

27. ln 1 x x x x x ln 1 x x x x xa b a b a b a b a bŠ ‹� œ � � � �á Ê � œ � � � �á1 1 1 x x 1 1 1
2 3 4 3 3 2 3 4

2 3 4 2 2 2 2 22 3 4

 x x x x xœ � � � �á œ1 1 1 1
3 6 9 12 3n

3 5 7 9 2n 11!_
œn 1

a b� �
n 1�

28. ln 1 x x x x x  and ln 1 x x x x x ln 1 x ln 1 xa b a b a b a b� œ � � � �á � œ � � � � �á Ê � � �1 1 1 1 1 1
2 3 4 2 3 4

2 3 4 2 3 4

 x x x x x x x x 2x x x xœ � � � �á � � � � � �á œ � � �á œˆ ‰ ˆ ‰ !1 1 1 1 1 1 2 2 2
2 3 4 2 3 4 3 5 2n 1

2 3 4 2 3 4 3 5 2n 1
_

œn 0
�

�

29. e 1 x  and sin x x e sin xx xx x x x x
2! 3! 3! 5! 7!œ � � � �á œ � � � �á Ê †

2 3 3 5 7

 1 x x x x x xœ � � � �á � � � �á œ � � � � Þ Þ Þ ÞŠ ‹Š ‹x x x x x 1 1
2! 3! 3! 5! 7! 3 30

2 3 52 3 3 5 7

30. ln 1 x x x x x  and 1 x x x  ln 1 xa b a b� œ � � � �á œ � � � �á Ê œ � †1 1 1
2 3 4 1 x 1 x 1 x

2 3 4 ln 1 x" "
� � �

# $ �a b
 x x x x 1 x x x x x x xœ � � � �á � � � �á œ � � � � Þ Þ Þ Þˆ ‰a b1 1 1 1 5 7

2 3 4 2 6 12
2 3 4 2 3 4# $
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31. tan x x x x x tan x tan x tan x� � � �1 3 5 7 1 1 11 1 1
3 5 7

2
œ � � � � Þ Þ Þ Ê œa b a ba b

 x x x x x x x x x x x xœ � � � � Þ Þ Þ � � � � Þ Þ Þ œ � � � � Þ Þ Þ Þˆ ‰ˆ ‰1 1 1 1 1 1 2 23 44
3 5 7 3 5 7 3 45 105

3 5 7 3 5 7 2 4 6 8

32. sin x x  and cos x 1 cos x sin x cos x cos x sin xœ � � � �á œ � � � �á Ê † œ † †x x x x x x
3! 5! 7! 2! 4! 6!

23 5 7 2 4 6

 cos x sin 2x 1 2x x x x xœ † œ � � � �á � � � �á œ � � � � Þ Þ Þ" "
# #Š ‹Š ‹x x x 7 61 1247

2! 4! 6! 3! 5! 7! 6 120 5040
2x 2x 2x 3 5 72 4 6 3 5 7a b a b a b

33. sin x x  and e 1 xœ � � � �á œ � � � �áx x x x x
3! 5! 7! 2! 3!

x3 5 7 2 3

 e 1 x x xÊ œ � � � � �á � � � � �á � � � � �á �ásin x x x x 1 x x x 1 x x x
3! 5! 7! 2 3! 5! 7! 6 3! 5! 7!

2 3Š ‹ Š ‹ Š ‹3 5 7 3 5 7 3 5 7

 1 x x xœ � � � � Þ Þ Þ Þ1 1
2 8

2 4

34. sin x x  and tan x x x x x sin tan x x x x xœ � � � �á œ � � � � Þ Þ Þ Ê œ � � � � Þ Þ Þx x x 1 1 1 1 1 1
3! 5! 7! 3 5 7 3 5 7

1 3 5 7 1 3 5 73 5 7 � �a b ˆ ‰
       x x x x x x x x x x x x� � � � � Þ Þ Þ � � � � � Þ Þ Þ � � � � � Þ Þ Þ �á1 1 1 1 1 1 1 1 1 1 1 1

6 3 5 7 120 3 5 7 5040 3 5 7
3 5 7 3 5 7 3 5 73 5 7ˆ ‰ ˆ ‰ ˆ ‰

 x x x xœ � � � � Þ Þ Þ1 3 5
2 8 16

3 5 7

35. Since n 3, then f x sin x, f x M on 0, 0.1 sin x 1 on 0, 0.1 M 1. Then R 0.1 1œ œ l l Ÿ Ò Ó Ê l l Ÿ Ò Ó Ê œ l l Ÿa b a b4 4
3

0.1 0
4a b a b a b l � l
x

4

 4.2 10 error 4.2 10œ ‚ Ê Ÿ ‚� �6 6

36. Since n 4, then f x e , f x M on 0, 0.5 e e on 0, 0.5 M 2.7. Thenœ œ l l Ÿ Ò Ó Ê l l Ÿ Ò Ó Ê œa b a b5 x 5 xa b a b È
  R 0.5 2.7 7.03 10 error 7.03 10l l Ÿ œ ‚ Ê Ÿ ‚4

0.5 0
5

4 4a b l � l
x

� �
5

37. By the Alternating Series Estimation Theorem, the error is less than   x 5! 5 10 x 600 10k kx
5!

&

Ê � ‚ Ê � ‚k k a b a b k k& &�% �%

  x 6 10 0.56968Ê � ‚ ¸k k È5 �#

38. If cos x 1  and x 0.5, then the error is less than 0.0026, by Alternating Series Estimation Theorem;œ � � œx (.5)
24

# %

# k k ¹ ¹
 since the next term in the series is positive, the approximation 1  is too small, by the Alternating Series Estimation� x#

#

 Theorem

39. If sin x x and x 10 , then the error is less than 1.67 10 , by Alternating Series Estimation Theorem;œ � ¸ ‚k k �$ �a b10
3!

10�$ $

 The Alternating Series Estimation Theorem says R (x) has the same sign as .  Moreover, x sin x# � �x
3!

$

  0 sin x x R (x)  x 0  10 x 0.Ê � � œ Ê � Ê � � �#
�$

40. 1 x 1  .  By the Alternating Series Estimation Theorem the errorÈ k k ¹ ¹� œ � � � �á � �x x x x
8 16 8 8

(0.01)
#

�# $ # #

 1.25 10œ ‚ �&

41. R (x) 1.87 10 , where c is between 0 and xk k ¹ ¹#
�œ � � ‚e x

3! 3!
3 (0.1) 4c 0 1$ Ð Þ Ñ $

42. R (x) 1.67 10 , where c is between 0 and xk k ¹ ¹#
�%œ � œ ‚e x

3! 3!
(0.1)c $ $

43. sin x  cos 2x 1# � " " " "
# # # # # #œ œ � œ � � � � �á œ � � �áˆ ‰ Š ‹1 cos 2x 2x 2 x 2 x(2x) (2x) (2x)

2! 4! 6! ! 4! 6!

# % ' # $ % & '

  sin x 2x   2 sin x cos xÊ œ � � �á œ � � � �á Êd d 2x 2 x 2 x
dx dx 2! 4! 6! 3! 5! 7!

(2x) (2x) (2x)a b Š ‹# # $ % & ' $ & (

 2x sin 2x, which checksœ � � � �á œ(2x) (2x) (2x)
3! 5! 7!

$ & (
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44. cos x cos 2x sin x 1# #
# #œ � œ � � � � �á � � � � �áŠ ‹ Š ‹(2x) (2x) (2x) (2x)

! 4! 6! 8! ! 4! 6! 8!
2x 2 x 2 x 2 x# % ' ) # $ % & ' ( )

 1 1 x x x xœ � � � �á œ � � � � �á2x 2 x 2 x 2
! 4! 6! 3 45 315

# $ % & '

#
# % ' )" "

45. A special case of Taylor's Theorem is f(b) f(a) f (c)(b a),  where c is between a and b f(b) f(a) f (c)(b a),œ � � Ê � œ �w w

 the Mean Value Theorem.

46. If f(x) is twice differentiable and at x a there is a point of inflection, then f (a) 0.  Therefore,œ œww

 L(x) Q(x) f(a) f (a)(x a).œ œ � �w

47. (a) f 0, f (a) 0 and x a interior to the interval I  f(x) f(a) (x a) 0 throughout Iww w #
#Ÿ œ œ Ê � œ � Ÿf (c )ww

#

  f(x) f(a) throughout I  f has a local maximum at x aÊ Ÿ Ê œ

 (b) similar reasoning gives f(x) f(a) (x a) 0 throughout I  f(x) f(a) throughout I  f has a� œ �   Ê   Êf (c )ww
#

#
#

 local minimum at x aœ

48. f(x) (1 x)   f (x) (1 x)   f (x) 2(1 x)   f (x) 6(1 x)œ � Ê œ � Ê œ � Ê œ ��" w �# ww �$ Ð Ñ �%3

  f (x) 24(1 x) ; therefore 1 x x x . x 0.1    Ê œ � ¸ � � � � Ê � � Ê �Ð Ñ �& # $" " "
� � �

&4
1 x 11 1 x 9 (1 x) 9

10 10 10k k ¹ ¹ ˆ ‰
&

  x   the error  e (0.1) 0.00016935 0.00017, since .Ê � Ê Ÿ � œ � œ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ˆ ‰ ˆ ‰x 10 10
(1 x) 9 4! 9 4! (1 x)

max f (x) x f (x)%

& &

Ð Ñ % Ð Ñ

� �
% %& &

$
"4 4

49. (a) f(x) (1 x)   f (x) k(1 x)   f (x) k(k 1)(1 x) ; f(0) 1, f (0) k, and f (0) k(k 1)œ � Ê œ � Ê œ � � œ œ œ �k k 1 k 2w � ww � w ww

  Q(x) 1 kx xÊ œ � � k(k )�"
#

#

 (b) R (x) x   x   0 x  or 0 x .21544k k k k¸ ¸#
" " " "$ $œ � Ê � Ê � � � �3 2

3! 100 100 100
† †

"Î$

50. (a) Let P x   x P .5 10  since P approximates  accurate to n decimals.  Then,œ � Ê œ � � ‚1 1 1k k k k �n

 P sin P ( x) sin ( x) ( x) sin x (x sin x)  (P sin P)� œ � � � œ � � œ � � Ê � �1 1 1 1 1k k
 sin x x 10 .5 10   P sin P gives an approximation to  correct to 3n decimals.œ � Ÿ � ‚ � ‚ Ê �k k k kx

3! 3!
0.125 3n 3n

$

� �
1

51. If f(x)  a x , then f (x)  n(n 1)(n 2) (n k 1)a x  and f (0) k! aœ œ � � â � � œ! !_ _

œ œn 0 n k
n n k

n k n k kÐ Ñ � Ð Ñ

  a  for k a nonnegative integer.  Therefore, the coefficients of f(x) are identical with the correspondingÊ œk
f (0)

k!

Ð Ñk

 coefficients in the Maclaurin series of f(x) and the statement follows.

52. :  f even  f( x) f(x)  f ( x) f (x)  f ( x) f (x)  f  odd;Note Ê � œ Ê � � œ Ê � œ � Êw w w w w

 f odd  f( x) f(x)  f ( x) f (x)  f ( x) f (x)  f  even;Ê � œ � Ê � � œ � Ê � œ Êw w w w w

 also, f odd  f( 0) f(0)  2f(0) 0  f(0) 0Ê � œ Ê œ Ê œ

 (a) If f(x) is even, then any odd-order derivative is odd and equal to 0 at x 0.  Therefore,œ

 a a a 0; that is, the Maclaurin series for f contains only even powers." $ &œ œ œ á œ

 (b) If f(x) is odd, then any even-order derivative is odd and equal to 0 at x 0.  Therefore,œ

 a a a 0; that is, the Maclaurin series for f contains only odd powers.! # %œ œ œ á œ

53-58.  Example CAS commands:
 :Maple
 f := x -> 1/sqrt(1+x);
 x0 := -3/4;
 x1 :=  3/4;
 # Step 1:
 plot( f(x), x=x0..x1, title="Step 1: #53 (Section 10.9)" );
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 # Step 2:
 P1 := unapply( TaylorApproximation(f(x), x = 0, order=1), x );
 P2 := unapply( TaylorApproximation(f(x), x = 0, order=2), x );
 P3 := unapply( TaylorApproximation(f(x), x = 0, order=3), x );
 # Step 3:
 D2f := D(D(f));
 D3f := D(D(D(f)));
 D4f := D(D(D(D(f))));
 plot( [D2f(x),D3f(x),D4f(x)], x=x0..x1, thickness=[0,2,4], color=[red,blue,green], title="Step 3: #57 (Section 9.9)" );
 c1 := x0;
 M1 := abs( D2f(c1) );
 c2 := x0;
 M2 := abs( D3f(c2) );
 c3 := x0;
 M3 := abs( D4f(c3) );
 # Step 4:
 R1 := unapply( abs(M1/2!*(x-0)^2), x );
 R2 := unapply( abs(M2/3!*(x-0)^3), x );
 R3 := unapply( abs(M3/4!*(x-0)^4), x );
 plot( [R1(x),R2(x),R3(x)], x=x0..x1, thickness=[0,2,4], color=[red,blue,green], title="Step 4: #53 (Section 10.9)" );
 # Step 5:
 E1 := unapply( abs(f(x)-P1(x)), x );
 E2 := unapply( abs(f(x)-P2(x)), x );
 E3 := unapply( abs(f(x)-P3(x)), x );
 plot( [E1(x),E2(x),E3(x),R1(x),R2(x),R3(x)], x=x0..x1, thickness=[0,2,4], color=[red,blue,green],
         linestyle=[1,1,1,3,3,3], title="Step 5: #53 (Section 10.9)" );
 # Step 6:
 TaylorApproximation( f(x), view=[x0..x1,DEFAULT], x=0, output=animation, order=1..3 );
 L1 := fsolve( abs(f(x)-P1(x))=0.01, x=x0/2 );                 # (a)
 R1 := fsolve( abs(f(x)-P1(x))=0.01, x=x1/2 );
 L2 := fsolve( abs(f(x)-P2(x))=0.01, x=x0/2 );
 R2 := fsolve( abs(f(x)-P2(x))=0.01, x=x1/2 );
 L3 := fsolve( abs(f(x)-P3(x))=0.01, x=x0/2 );
 R3 := fsolve( abs(f(x)-P3(x))=0.01, x=x1/2 );
 plot( [E1(x),E2(x),E3(x),0.01], x=min(L1,L2,L3)..max(R1,R2,R3), thickness=[0,2,4,0], linestyle=[0,0,0,2],
        color=[red,blue,green,black], view=[DEFAULT,0..0.01], title="#53(a) (Section 10.9)" );
 abs(`f(x)`-`P`[1](x) ) <= evalf( E1(x0) );                           # (b)
 abs(`f(x)`-`P`[2](x) ) <= evalf( E2(x0) );
 abs(`f(x)`-`P`[3](x) ) <= evalf( E3(x0) );
 : (assigned function and values for a, b, c, and n may vary)Mathematica
 Clear[x, f, c]

 f[x_]=  (1 x)� 3/2

 {a, b}= { 1/2, 2};�

 pf=Plot[ f[x], {x, a, b}];
 poly1[x_]=Series[f[x], {x,0,1}]//Normal
 poly2[x_]=Series[f[x], {x,0,2}]//Normal
 poly3[x_]=Series[f[x], {x,0,3}]//Normal
 Plot[{f[x], poly1[x],  poly2[x], poly3[x]}, {x, a, b},
 PlotStyle {RGBColor[1,0,0], RGBColor[0,1,0], RGBColor[0,0,1], RGBColor[0,.5,.5]}];Ä
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 The above defines the approximations. The following analyzes the derivatives to determine their maximum values.
 f''[c]
 Plot[f''[x], {x, a, b}];
 f'''[c]
 Plot[f'''[x], {x, a, b}];
 f''''[c]
 Plot[f''''[x], {x, a, b}];
 Noting the upper bound for each of the above derivatives occurs at x = a, the upper bounds m1, m2, and m3 can be defined
 and bounds for remainders viewed as functions of x.
 m1=f''[a]
 m2=-f'''[a]
 m3=f''''[a]

 r1[x_]=m1 x  /2!2

 Plot[r1[x], {x, a, b}];

 r2[x_]=m2 x  /3!3

 Plot[r2[x], {x, a, b}];

 r3[x_]=m3 x  /4!4

 Plot[r3[x], {x, a, b}];
 A three dimensional look at the error functions, allowing both c and x to vary can also be viewed. Recall that c must be a
 value between 0 and x, so some points on the surfaces where c is not in that interval are meaningless.

 Plot3D[f''[c] x  /2!, {x, a, b}, {c, a, b}, PlotRange All]2 Ä

 Plot3D[f'''[c] x  /3!, {x, a, b}, {c, a, b}, PlotRange All]3 Ä

 Plot3D[f''''[c] x  /4!, {x, a, b}, {c, a, b}, PlotRange All]4 Ä

10.10  THE BINOMIAL SERIES

 1. (1 x) 1 x 1 x x x� œ � � � �á œ � � � �á"Î# # $" " " "
# # #

ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰" " " "

# # # # #

# $� � �x x
! 3! 8 16

3

 2. (1 x) 1 x 1 x x x� œ � � � �á œ � � � �á"Î$ # $" " "
#3 ! 3! 3 9 81

5ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰" "# $

3 3 3 3 3
2 2 5

� � �x x

 3. (1 x) 1 ( x) 1 x x x� œ � � � � �á œ � � � �á�"Î# # $" "
# # #

ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰� � � � � � �
" "

# # # # #

# $3 3 5( x) ( x)
! 3! 8 16

3 5

 4. (1 2x) 1 ( 2x) 1 x x x� œ � � � � �á œ � � � �á"Î# # $"
# #

� � �ˆ ‰ ˆ ‰" "

# #

#
" "

# # #� �( 2x)
! 3! 2 2

( 2x) 1 1Š ‹Š ‹Š ‹3 $

 5. 1 1 1 x x xˆ ‰ ˆ ‰� œ � # � � �á œ � � �x x 3
! 3! 4# # # #

�# # $"( 2)( 3) ( 2)( 3)( 4)� � � � �ˆ ‰ ˆ ‰x x
# #

# $

 6. 1 1 4 0 1 x x x xˆ ‰ ˆ ‰� œ � � � � � � �á œ � � � �x x 4 2 4 1
3 3 ! 3! 4! 3 3 27 81

4 2 3 4(4)(3) (4)(3)(2) (4)(3)(2)(1)ˆ ‰ ˆ ‰ ˆ ‰� � �
x x x
3 3 3

4# $

#

 7. 1 x 1 x 1 x x xa b� œ � � � �á œ � � � �á$ $ $ ' *�"Î# " "
# # #

ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰a b a b� � � � �
" "

# # # # #

$ $# $3 3 5x x
! 3! 8 16

3 5

 8. 1 x 1 x 1 x x xa b� œ � � � �á œ � � � �á# # # % '�"Î$ " "
#3 ! 3! 3 9 81

2 14ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰a b a b� � � � �
" "# ## $

3 3 3 3 3
4 4 7x x

 9. 1 1 1ˆ ‰ ˆ ‰� œ � � � �á œ � � � �á1 1 1
x x ! 3! x 8x 16x

"Î# " " "
# # #

ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰" " " "

# # # # #

# $

� � �
1 3 1
x x

# $
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10. x 1 x x 1 x x x x xx 1 2 14
1 x

3
! 3! 3 9 81

3 4È3 �

�"Î
#

#œ � œ � � � �á œ � � � �áa b Œ �ˆ ‰
�

" � � � � �

3
x xˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰" "# $

3 3 3 3 3
4 4 7

11. (1 x) 1 4x 1 4x 6x 4x x� œ � � � � œ � � � �% # $ %
#

(4)(3)x (4)(3)(2)x (4)(3)(2)x
! 3! 4!

# $ %

12. 1 x 1 3x 1 3x 3x xa b� œ � � � œ � � �# # # % '$

#
(3)(2) x (3)(2)(1) x

! 3!
a b a b# ## $

13. (1 2x) 1 3( 2x) 1 6x 12x 8x� œ � � � � œ � � �$ # $� �
#

(3)(2)( 2x) (3)(2)(1)( 2x)
! 3!

# $

14. 1 1 4 1 2x x x xˆ ‰ ˆ ‰� œ � � � � � œ � � � �x x 3
! 3! 4! 2 16# # # #

% # $ %" "(4)(3) (4)(3)(2) (4)(3)(2)(1)ˆ ‰ ˆ ‰ ˆ ‰� � �
x x x
# # #

# $ %

15. sin x  dx x  dx 0.00267 with error' '
0 0

0 2 0 2Þ Þ

# #
!Þ# !Þ#

! !
œ � � �á œ � �á ¸ ¸Š ‹ ’ “ ’ “x x x x x

3! 5! 3 7 3! 3

' "! $ ( $

†

 E 0.0000003k k Ÿ ¸(.2)
7 3!

(

†

16.  dx  1 x 1  dx 1  dx' ' '
0 0 0

0 2 0 2 0 2Þ Þ Þ

e   x x x x x x
x x ! 3! 4! 6 24

� # $ % # $x � " "
# #œ � � � � �á � œ � � � � �áŠ ‹ Š ‹

 x 0.19044 with error E 0.00002œ � � � �á ¸ � Ÿ ¸’ “ k kx x
4 18 96

(0.2)# $ %!Þ#

!

17.  dx 1  dx x [x] 0.1 with error' '
0 0

0 1 0 1Þ Þ

"

�

!Þ"

!

!Þ"
!È1  x

x 3x x
2 8 10%

% ) &

œ � � �á œ � �á ¸ ¸Š ‹ ’ “
 E 0.000001k k Ÿ œ(0.1)

10

&

18.   1 x  dx 1  dx x x 0.25174 with error' '
!

!Þ#&
$ #

!Þ#& !Þ#&

! !

È Š ‹ ’ “ ’ “� œ � � �á œ � � �á ¸ � ¸
0

0 25Þ

x x x x x
3 9 9 45 9

# % $ & $

 E 0.0000217k k Ÿ ¸(0.25)
45

&

19.  dx 1  dx x x' '
0 0

0 1 0 1Þ Þ

sin x x x x x x x x x
x 3! 5! 7! 3 3! 5 5! 7 7! 3 3! 5 5!œ � � � �á œ � � � �á ¸ � �Š ‹ ’ “ ’ “# % ' $ & ( $ &

† † † † †

!Þ" !Þ"

! !

 0.0999444611, E 2.8 10¸ Ÿ ¸ ‚k k (0.1)
7 7!

127

†
�

20. exp x  dx 1 x  dx x x' '
0 0

0 1 0 1Þ Þa b Š ‹ ’ “ ’ “� œ � � � � �á œ � � � �á ¸ � � �# #
!Þ" !Þ"

! !

x x x x x x x x x
2! 3! 4! 3 10 42 3 10 42

% ' ) $ & ( $ & (

 0.0996676643, E 4.6 10¸ Ÿ ¸ ‚k k (0.1)
216

129
�

21. 1 x (1) (1) x (1) x (1) xa b a b a b a b� œ � � �% "Î# �"Î# % �$Î# % �&Î# %"Î# # $

#

Š ‹"
#

" " " "

# # # # #

1 ! 3!

ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰� � �
3

 (1) x 1� �á œ � � � � �á
ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰" "

# # # #
� � �

3 5

4! 8 16 128
x x x 5x�(Î# % %

#a b % ) "# "'

  1  dx x 0.100001, E 1.39 10Ê � � � � �á ¸ � ¸ Ÿ ¸ ‚'
0

0 1Þ Š ‹ ’ “ k kx x x 5x x
8 16 128 10 72

(0.1) 11% ) "# "' &

#

!Þ"

!

�
9

22.  dx  dx' '
0 0

1 1ˆ ‰ Š ‹ ’ “1 cos x x x x x x x x x x
x 4! 6! 8! 10! 3 4! 5 6! 7 8! 9 10!

� "
# #

"

!
#

# % ' ) $ & ( *

œ � � � � �á ¸ � � � �
† † † †

 0.4863853764,  E 1.9 10¸ Ÿ ¸ ‚k k 1
11 12!

10
†

�

23. cos t  dt 1  dt t   error .00011' '
0 0

1 1
#

#

"

!

"œ � � � �á œ � � � �á Ê � ¸Š ‹ ’ “ k kt t t t t t
4! 6! 10 9 4! 13 6! 13 6!

% ) "# & * "$

† † †
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24. cos t dt 1  dt t' '
0 0

1 1È Š ‹ ’ “œ � � � � �á œ � � � � �át t t t t t t t
4! 6! 8! 4 3 4! 4 6! 5 8!#

"

!

# $ % # $ % &

† † †

  error 0.000004960Ê � ¸k k "
5 8!†

25. F(x) t  dt  œ � � � �á œ � � � �á ¸ � �'
0

x xŠ ‹ ’ “#

!

t t t t t t t x x x
3! 5! 7! 3 7 3! 11 5! 15 7! 3 7 3! 11 5!

' "! "% $ ( "" "& $ ( ""

† † † † †

  error 0.000013Ê � ¸k k "
15 7!†

26. F(x) t t  dtœ � � � � � �á œ � � � � � �á'
0

x xŠ ‹ ’ “# %

!

t t t t t t t t t t
2! 3! 4! 5! 3 5 7 2! 9 3! 11 4! 13 5!

' ) "! "# $ & ( * "" "$

† † † †

   error 0.00064¸ � � � � Ê � ¸x x x x x
3 5 7 2! 9 3! 11 4! 13 5!

$ & ( * ""

† † † †

k k "

27. (a) F(x) t  dt   error .00052œ � � � �á œ � � �á ¸ � Ê � ¸'
0

x xŠ ‹ ’ “ k kt t t t t t x x
3 5 7 2 1 30 1 30

(0.5)$ & ( # % ' # % '

# # #!

 (b) error .00089 when F(x) ( 1)  k k � ¸ ¸ � � � �á � �"
#

"&
33 34 3 4 5 6 7 8 31 32

x x x x x
† † † † †

# % ' ) $#

28. (a) F(x) 1  dt t xœ � � � �á œ � � � � �á ¸ � � � �'
0

x xŠ ‹ ’ “t t t t t t t x x x x
2 3 4 2 2 3 3 4 4 5 5 3 4 5

# $ # $ % & # $ % &

# # # #
† † † † ! #

  error .00043Ê � ¸k k (0.5)
6

'

#

 (b) error .00097 when F(x) x ( 1)  k k � ¸ ¸ � � � �á � �"
#

$"
32 3 4 31

x x x x
# # # # #

# $ % $"

29. e (1 x) 1 x 1 x    lim   " " "
# #

� �
x x 3! 3! 4! x

x x x x x e (1 x)
# # #

# $ #a b Š ‹Š ‹� � œ � � � �á � � œ � � �á Ê
x 0Ä

x

  lim  œ � � �á œ
x 0Ä

Š ‹" "
# #

x x
3! 4!

#

30. e e 1 x 1 x 2x" " "�
# #x x ! 3! 4! ! 3! 4! x 3! 5! 7!

x x x x x x x x 2x 2x 2xa b ’ “ Š ‹Š ‹ Š ‹� œ � � � � �á � � � � � �á œ � � � �á
# $ % # $ % $ & (

 2    lim    lim  2 2œ � � � �á Ê œ � � � �á œ2x 2x 2x e e 2x 2x 2x
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# % ' � # % '

x 0 xÄ Ä _

x x� Š ‹

31. 1 cos t 1 1    lim   " " "
# # #

"� �

t t t
t t t t t t t

4! 6! 4! 6! 8!

cos t
% % %

# # # % ' # %Š ‹ ’ “Š ‹� � œ � � � � � �á œ � � � �á Ê
t 0Ä

Š ‹t#

#

  lim  œ � � � �á œ �
t 0Ä

Š ‹" "
4! 6! 8! 24

t t# %

32. sin    lim   " " "
� �

) ) )

) ) ) ) ) )
) )

& & &

$ $ $ & # %Š ‹ Š ‹� � � œ � � � � � �á œ � � �á Ê) ) ) )6 6 3! 5! 5! 7! 9!

sin 

) Ä 0

Š ‹)
$

6

  lim  œ � � �á œ
) Ä 0

Š ‹" "
#5! 7! 9! 1 0

) )
# %

33. y tan y y y    lim    lim  " " " "�" �
y y 3 5 3 5 7 y 3 5 7

y y y y y tan y y y
$ $ $

$ & # % �" # %a b ’ “ Š ‹Š ‹� œ � � � �á œ � � �á Ê œ � � �á
y 0 y 0Ä Ä

 œ "
3

34. tan y sin y
y  cos y y  cos y y  cos y cos y

y y
�"

$ $ $

�
� � �á � � � �á � � �á � � �á

œ œ œ
Œ � Œ � Œ � Œ �y y y y y 23y 23y

3 5 3! 5! 6 5! 6 5!

$ & $ & $ & #
"

   lim    lim   Ê œ œ �
y 0 y 0Ä Ä

tan y sin y
y  cos y cos y 6

�"

$

�
� � �á

"
Œ �"

#

6 5!
23y

35. x 1 e x 1 1 1    lim  x e 1# � Î # # � Î" " " " "
# #Š ‹ Š ‹ˆ ‰� � œ � � � � � �á œ � � � �á Ê �1 x 1 x

x 6x xx 6x
# #

# ' #% % x Ä _

  lim  1 1œ � � � �á œ �x Ä _
ˆ ‰" "

#x 6x# %
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36. (x 1) sin (x 1) 1� œ � � � �á œ � � �áˆ ‰ Š ‹" " " " " "
� � � � � �x 1 x 1 3!(x 1) 5!(x 1) 3!(x 1) 5!(x 1)$ & # %

   lim  (x 1) sin  lim  1 1Ê � œ � � �á œx xÄ _ Ä _
ˆ ‰ Š ‹" " "

� � �x 1 3!(x 1) 5!(x 1)# %

37.  lim   lim   ln 1 x ln 1 x
1 cos x 1 cos x

x 1 1

1 1

a b a bŒ � Œ � Œ �
Š ‹ Š ‹ Š ‹

� �
� �

� � �á � � �á � � �á

� � � �á � �á

# #

#

œ œ Ê œ

x x x x x x
3 3 3

x x
! 4! ! 4!

x

% ' # % # %

# # #

# %

#

" "

# #

#
x 0 x 0Ä Ä ! 4!

x� �á
# œ œ2! 2

38.    lim   x 4 x 2 x 4
ln (x 1) ln (x 1)

(x 2)(x 2)

(x 2) 1

# #� � �
� �

� �

� � � �á � � �á
œ œ Ê’ “ ’ “(x 2) (x 2) (x 2)

3 3
x 2� � �

# $ #

# #

� x 2Ä

  lim   4œ œ
x 2Ä

x 2

1

�

� � �á’ “x 2 (x 2)
3

�

#

� #

39. sin 3x 3x x x . . .  and 1 cos 2x 2x x x . . .  lim   2 2 6 10 2 4 69 81 2 4 sin 3x
2 40 3 45 1 cos 2xœ � � � � œ � � � Ê

x 0Ä

2

�

  lim    lim   œ œ œ
x 0 x 0Ä Ä

3x x x . . . 3 x x . . .

2x x x . . . 2 x x . . .
3
2

2 6 10 4 89 81 9 81
2 40 2 40

2 4 6 2 42 4 2 4
3 45 3 45

� � � � � �

� � � � � �

40. ln 1 x x . . .  and  x sin x x x x x  lim   a b� œ � � � � œ � � � � Þ Þ Þ Ê3 3 2 3 7 11 15x x x 1 1 1
2 3 4 6 120 5040 x sin x

ln 1 x6 9 12 3

2
x 0Ä

ˆ ‰�

  lim    lim   1œ œ œ
x 0 x 0Ä Ä

x . . . 1 . . .

x x x x 1 x x x

3 x x x x x x6 9 12 3 6 9

2 3 4 2 3 4
3 7 11 15 4 8 121 1 1 1 1 1

6 120 5040 6 120 5040

� � � � � � � �

� � � � Þ Þ Þ � � � � Þ Þ Þ

41. 1 1 e e� � � � � Þ Þ Þ œ œ1 1 1
2 3 4

1
x x x

42. 1ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰” •1 1 1 1 1 1 1 1 1 4 1
4 4 4 4 4 4 64 1 1 4 64 3 48

3 4 5 3 2
� � � Þ Þ Þ œ � � � Þ Þ Þ œ œ œ� Î

43. 1 1 cos� � � � Þ Þ Þ œ � � � � Þ Þ Þ œ3 3 3 1 3 1 3 1 3 3
4 2 4 4 4 6 2 4 4 4 6 4 4

2 4 62 4 6

2 4 6x x x x x x
ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰

44. ln 1 ln1 1 1 1 1 1 1 1 1 1 1 1 3
2 2 2 3 2 4 2 2 2 3 4 2 2

2 3 4
� � � � Þ Þ Þ œ � � � � Þ Þ Þ œ � œ† † † # # #2 3 4 ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰

45. sin1 1 1 1 1 1 1 1 1

3 3 3 3 5 3 7 3 3 3 5 3 7 3 3 2
1 1 13 5 7 3� � � � Þ Þ Þ œ � � � � Þ Þ Þ œ œ

3 5 7

3 5 7x x x x x x
ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ È

46. tan2 2 2 2 2 1 2 1 2 1 2 2
3 3 3 3 5 3 7 3 3 3 5 3 7 3 3

3 5 7 1� � � � Þ Þ Þ œ � � � � Þ Þ Þ œ
3 5 7

3 5 7† † †
�ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰

47. x x x x x 1 x x x x3 4 5 6 3 2 3 3 1 x
1 x 1 x� � � � Þ Þ Þ œ � � � � Þ Þ Þ œ œa b ˆ ‰
� �

3

48. 1 1 3x 3x 3x cos 3x� � � � Þ Þ Þ œ � � � � Þ Þ Þ œ3 x 3 x 3 x 1 1 1
2 4 6 2 4 6

2 4 62 2 4 4 6 6

x x x x x xa b a b a b a b
49. x x x x x 1 x x x x3 5 7 9 3 2 2 2 32 3 1 x

1 + x 1 + x� � � � Þ Þ Þ œ � � � � Þ Þ Þ œ œŠ ‹a b a b ˆ ‰2 2

3

50. x 2x x 1 2x x e2 3 2 2 2x2 x 2 x 2 x
2 3 4 2 3 4

2x 2x 2x� � � � � Þ Þ Þ œ � � � � � Þ Þ Þ œ
2 4 3 5 4 6 2 3 4

x x x x x x
�Š ‹a b a b a b

51. 1 2x 3x 4x 5x 1 x x x x x� � � � � � Þ Þ Þ œ � � � � � � Þ Þ Þ œ œ2 3 4 2 3 4 5d d 1 1
dx dx 1 x 1 x
a b ˆ ‰

�
�
�a b2

52. 1 x ln 1 x� � � � � Þ Þ œ � � � � � � � Þ Þ œ � � œ �x x x x 1 x x x x 1
2 3 4 5 x 2 3 4 5 x x

ln 1 x2 3 4 2 3 4 5Š ‹ a b a b�
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53. ln ln (1 x) ln (1 x) x x 2 xˆ ‰ Š ‹ Š ‹ Š ‹1 x x x x x x x x x
1 x 3 4 3 4 3 5
�
� # #œ � � � œ � � � �á � � � � � �á œ � � �á

# $ % # $ % $ &

54. ln (1 x) x   error  when  x 0.1;� œ � � � �á � �á Ê œ œ œx x x
3 4 n n n10

( 1) x ( ) x# $ % � �

#
� �" "n 1 n n 1 n

nk k ¹ ¹
   n10 10  when n 8  7 terms" " )

n10 10
n

n � Ê �   Ê)

55. tan x x   error  when x 1;�" �" �
� � # �

"œ � � � � �á � �á Ê œ œ œx x x x
3 5 7 9 2n 1 2n 1 n 1

( ) x ( 1) x$ & ( * � � � �n 1 2n 1 n 1 2n 1k k ¹ ¹
   n 500.5  the first term not used is the 501   we must use 500 terms" "

# � #n 1 10
1001� Ê � œ Ê Ê$

st

56. tan x x  and  lim   x   lim   x�" # #�
� � # �

� �œ � � � � �á � �á œ œx x x x x 2n 1 2n 1
3 5 7 9 2n 1 2n 1 x n 1

( 1) x$ & ( * �� �

�

n 1 2n 1 2n 1

2n 1n nÄ _ Ä _
¹ ¹ ¸ ¸

†

  tan x converges for x 1; when x 1 we have    which is a convergent series; when x 1Ê � œ � œ�" �
�k k !_

œn 1

( 1)
2n 1

n

 we have   which is a convergent series  the series representing tan x diverges for x 1! k k_

œn 1

( 1)
2n 1
�

�
�"

n 1�

Ê �

57. tan x x  and when the series representing 48 tan  has an�" �"�
�

"œ � � � � �á � �áx x x x
3 5 7 9 2n 1 18

( 1) x$ & ( * � �n 1 2n 1 ˆ ‰
 error less than 10 , then the series representing the sum" �'

3 †

 48 tan 32 tan 20 tan  also has an error of magnitude less than 10 ; thus�" �" �" �'" " "
#

ˆ ‰ ˆ ‰ ˆ ‰
18 57 39� �

 error 48   n 4  using a calculator  4 termsk k œ � Ê   Ê
Š ‹"

18

2n 1�

'# � †
"

n 1 3 10

58. ln (sec x) tan t dt t  dtœ œ � � �á ¸ � � �á' '
0 0

x xŠ ‹t 2t x x x
3 15 12 45

$ & # % '

#

59. (a) 1 x 1   sin x x ; Using the Ratio Test:a b� ¸ � � � Ê ¸ � � �# �"�"Î#

#
x 3x 5x x 3x 5x

8 16 6 40 112

# % ' $ & (

  lim   1  x   lim   
n nÄ _ Ä _

¹ ¹ ¹ ¹1 3 5 (2n 1)(2n 1)x 2 4 6 (2n)(2n )
2 4 6 (2n)(2n 2)(2n 3) 1 3 5 (2n 1)x
† † † †

† † † †

â � � â �"
â � � â �

#
2n 3

2n 1

�

�† � Ê
(2n 1)(2n 1)
(2n 2)

� �

� (2n 3)�
� 1

  x 1  the radius of convergence is 1. See Exercise 69.Ê � Êk k
 (b) cos x 1 x   cos x sin x x xd x 3x 5x x 3x 5x

dx 6 40 112 6 40 112a b a b Š ‹�" # �" �"�"Î#

# # #œ � � Ê œ � ¸ � � � � ¸ � � � �1 1 1
$ & ( $ & (

60. (a) 1 t (1) (1) ta b a bˆ ‰� ¸ � � � �# �"Î# �$Î# #�"Î# � � � � �"
# #

ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰a b a b" "

# # # # #
�&Î# # �(Î# ## $3 3 5(1) t (1) t

! 3!

 1   sinh x 1  dt xœ � � � Ê ¸ � � � œ � � �t 3t 3 5t t 3t 5t x 3x 5x
2 2! 2 3! 8 16 6 40 112

# % ' # % ' $ & (

# $# #
�"

† †

† '
0

xŠ ‹
 (b) sinh 0.24746908; the error is less than the absolute value of the first unused�" " " "ˆ ‰

4 4 384 40,960
3¸ � � œ

 term, , evaluated at t  since the series is alternating  error 2.725 105x
112 4 112

5(
" (

œ Ê � ¸ ‚" �'k k ˆ ‰
4

61. 1 x x x   1 x x x�" " � "
� � � � �

# $ # $
1 x 1 ( x) dx 1 x 1 x dx

d 1 dœ � œ � � � � �á Ê œ œ � � � � �áˆ ‰ a b#

 1 2x 3x 4xœ � � � �á# $

62. 1 x x x   1 x x x 2x 4x 6x" "
� �

# % ' # % ' $ &
�1 x dx 1 x dx

d 2x d
1 x# # # #œ � � � �á Ê œ œ � � � �á œ � � �áˆ ‰ a ba b
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632 Chapter 10 Infinite Sequences and Series

63. Wallis' formula gives the approximation 4  to produce the table1 ¸ ’ “2 4 4 6 6 8 (2n 2) (2n)
3 3 5 5 7 7 (2n 1) (2n 1)

† † † † † †

† † † † † †

â �
â � �

  n  µ 1

  10 3.221088998
  20 3.181104886
  30 3.167880758
  80 3.151425420
  90 3.150331383
  93 3.150049112
  94 3.149959030
  95 3.149870848
 100 3.149456425 
 At n 1929 we obtain the first approximation accurate to 3 decimals:  3.141999845.  At n 30,000 we still doœ œ

 not obtain accuracy to 4 decimals:  3.141617732, so the convergence to  is very slow.  Here is a  CAS1 Maple
 procedure to produce these approximations:
 pie  :=
 proc(n)
 local  i,j;
 a(2)  := evalf(8/9);
 for  i  from  3  to n do  a(i)  :=  evalf(2*(2*i 2)*i/(2*i 1)^2*a(i 1))  od;� � �

 [[j,4*a(j)]  $  (j  =  n 5  ..  n)]�

 end

64. (a) f x 1 x f x k x  1 x f x 1 x k xa b a b a b a b a b! ! !ˆ ‰ ˆ ‰ ˆ ‰œ � Ê œ Ê � † œ �
_ _ _

œ œ œk k k1 1 1

m m m
k k k

k k 1 k 1w � w �

 k x x k x k x k x 1 x k x k xœ � † œ � œ � �! ! ! ! ! !ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰a b_ _ _ _ _ _

œ œ œ œ œ œk k k k k k1 1 1 1 2 1

m m m m m m m
k k k k 1 k k

k 1 k 1 k 1 k 0 k 1 k� � � �

 m  k x  k x    Note that:  k x  k 1 x .œ � � œ �! ! ! !ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰a b_ _ _ _

œ œ œ œk k k k2 1 2 1

m m m m
k k k k 1

k 1 k k 1 k� �
�

 Thus, 1 x f x m  k x  k x m  k 1 x  k xa b a b a b! ! ! !ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰� † œ � � œ � � �w �
�

_ _ _ _

œ œ œ œk k k k2 1 1 1

m m m m
k k k 1 k

k 1 k k k

 m  k 1 x k x m  k 1 k x .œ � � � œ � � �! !’ “ ’ “ˆ ‰ ˆ ‰ ˆ ‰a b a bˆ ‰ ˆ ‰_ _

œ œk k1 1

m m m m
k 1 k k 1 k

k k k
� �

 Note that: k 1 k k 1 kˆ ‰ ˆ ‰a b a bm m
k 1 k k 1 ! k!

m m m k 1 1 m m m k 1
� �

† �" â � � � † �" â � �� � œ � �a b a b a b a ba ba b
 k m k k m m .œ � œ � � œ œm m m k m m m k 1 m m m k 1 m m m k 1

k! k! k! k! k
m† � " â � † �" â � � † �" â � � † �" â � �a b a b a b a b a b a b a b a ba ba b ˆ ‰

 Thus, 1 x f x m  k 1 k x m  m x m m xa b a b a b! ! !’ “ ’ “ˆ ‰ ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰ ˆ ‰� † œ � � � œ � œ �w
�

_ _ _

œ œ œk k k1 1 1

m m m m
k 1 k k k

k k k

 m 1 x m f x f x  if x 1.œ � œ † Ê œ �" � �Œ �!ˆ ‰ a b a b_

œk 1

m
k 1 x

k m f xw †
�
a ba b

 (b) Let g x 1 x f x g x m 1 x f x 1 x f xa b a b a b a b a b a b a b a bœ � Ê œ � � � �� � � �w wm m 1 m

 m 1 x f x 1 x m 1 x f x 1 x m f x 0.œ � � � � † œ � � � � † † œa b a b a b a b a b a b a b� � � † � � � �
�

m 1 m m f x m 1 m 1
1 x
a ba b

 (c) g x 0 g x c 1 x f x c f x c 1 x . Since f x 1 xw �
�

a b a b a b a b a b a b a b !ˆ ‰œ Ê œ Ê � œ Ê œ œ � œ �m mc
1 x

m
k

ka b�m

_

œk 1

 f 0 1 0 1 0 1 c 1 0 1 c 1 f x 1 x .Ê œ � œ � œ Ê � œ Ê œ Ê œ �a b a b a b a b a b!ˆ ‰_

œk 1

m
k

k m m

65. 1 x 1 x (1) (1) xa b a b a ba b ˆ ‰� œ � � œ � � � �# # �"Î# �$Î# #�"Î# �"Î# "
# #

ˆ ‰ ˆ ‰ a b� � �
"

# #

�&Î# # #3 (1) x
!

 1 1  � �á œ � � � �á œ �
ˆ ‰ ˆ ‰ ˆ ‰ a b� � � �

"
# # #

�(Î# # $3 5 (1) x
3! 2 ! 2 3! n!

x 1 3x 1 3 5x 1 3 5 (2n 1)x# % '

# $# # #
â �

† † †

† † †

† †!_
œn 1

2n

n

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.



 Section 10.10 The Binomial Series 633

  sin x 1 t  dt 1   dt x  ,Ê œ � œ � œ ��" # �"Î# â � â �
# # â �

' '
0 0

x xa b Œ �! !_ _

œ œn 1 n 1

1 3 5 (2n 1)x 1 3 5 (2n 1)x
n! 4 (2n)(2n 1)

† † † †

† †

2n 2n 1

n

�

 where x  1k k �

66. tan t tan x  dt  1  dtc d – — ˆ ‰�" �"_

# �
" " " "

x x x x
œ � œ œ œ � � � �á1 ' ' '_ _ _

dt
1 t t t tt# # # '%

Š ‹
Š ‹
1
t

t

#

"

#
1�

  dt  lim   œ � � � �á œ � � � � �á œ � � � �á'
x

b

x

_ˆ ‰ � ‘" " " " " " " " " " " "
t t t t 3t 5t x 3x 5xt 7t 7x# ' ) $ & $ &% ( (

b Ä _

  tan x , x 1; tan t tan x   Ê œ � � � �á � œ � œ�" �" �"
# # �

" " "1 1

x 3x 5x 1 t
dt

$ & #c d x x

�_
�_

'
  lim     tan x ,œ � � � � �á œ � � � � �á Ê œ � � � � �á

b Ä �_
� ‘" " " " " " " " " " "�"

#t 3t 5t x 3x 5x x 3x 5x7t 7x$ & $ & $ &( (

x

b
1

 x 1� �

67. (a) e cos ( ) i sin ( ) 1 i(0) 1�i1 œ � � � œ � � œ �1 1

 (b) e cos i sin (1 i)i 4
4 4 2 2 2

i1 1 1Î " "œ � œ � œ �ˆ ‰ ˆ ‰ Š ‹È È È
 (c) e cos i sin 0 i( 1) i� Î

# #
i 21 1 1œ � � � œ � � œ �ˆ ‰ ˆ ‰

68. e cos i sin   e e cos ( ) i sin ( ) cos i sin ;i i i( )) ) )œ � Ê œ œ � � � œ �) ) ) ) ) )
� �

 e e cos i sin cos i sin 2 cos   cos ;i i e e) )� œ � � � œ Ê œ� �
#) ) ) ) ) )

i i) )�

 e e cos i sin (cos i sin ) 2i sin   sin i i e e
i

) )� œ � � � œ Ê œ� �
#) ) ) ) ) )

i i) )�

69. e 1 x   e 1 i  andx ix x x
! 3! 4! 2! 3! 4!

(i ) (i ) (i )œ � � � � �á Ê œ � � � � �á
# $ % # $ %

#
) ) ) )

)

 e 1 i 1 i� � � �
#

i ( i ) ( i ) ( i ) (i ) (i ) (i )
2! 3! 4! ! 3! 4!

) ) ) ) ) ) )œ � � � � �á œ � � � � �á) )
# $ % # $ %

  Ê œe ei i) )�
# #

�

Š ‹ Š ‹1 i 1 i� � � � �á � � � � � �á) )
(i ) (i ) (i ) (i ) (i ) (i )

! 3! 4! ! 3! 4!
) ) ) ) ) )
# $ % # $ %

# #

 1 cos ;œ � � � �á œ) ) )
# % '

#! 4! 6! )

 e e
i i

i i) )�
# #

�

œ
Š ‹ Š ‹1 i 1 i� � � � �á � � � � � �á) )

(i ) (i ) (i ) (i ) (i ) (i )
! 3! 4! ! 3! 4!
) ) ) ) ) )
# $ % # $ %

# #

 sin œ � � � �á œ) )
) ) )
$ & (

3! 5! 7!

70. e cos i sin   e e cos ( ) i sin ( ) cos i sin i i i) ) )œ � Ê œ œ � � � œ �) ) ) ) ) )
� Ð� Ñ

 (a) e e (cos i sin ) (cos i sin ) 2 cos   cos cosh ii i e e) )� œ � � � œ Ê œ œ� �
#) ) ) ) ) ) )

i i) )�

 (b) e e (cos i sin ) (cos i sin ) 2i sin   i sin sinh ii i e e
2

) )� œ � � � œ Ê œ œ� �
) ) ) ) ) ) )

i i) )�

71. e  sin x 1 x xx x x x x x x
! 3! 4! 3! 5! 7!œ � � � � �á � � � �áŠ ‹Š ‹# $ % $ & (

#

 (1)x (1)x x x x x x x x ;œ � � � � � � � � � � �á œ � � � �á# $ % & # $ &" " " " " " " " "
# # # #

ˆ ‰ ˆ ‰ ˆ ‰
6 6 6 1 0 1 4 3 30

 e e e e (cos x i sin x) e  cos x i e  sin x   e  sin x is the series of the imaginary partx ix 1 i x x x x x
† œ œ � œ � ÊÐ � Ñ a b

 of e  which we calculate next; e   1 (x ix)Ð � Ñ Ð � Ñ � � � �
#

1 i x 1 i x (x ix) (x ix) (x ix) (x ix)
n! ! 3! 4!œ œ � � � � � �á!_

œn 0

n # $ %

 1 x ix 2ix 2ix 2x 4x 4x 4ix 8ix   the imaginary partœ � � � � � � � � � � � � �á Ê" " " " "
#

# $ $ % & & '
! 3! 4! 5! 6!a b a b a b a b a b

 of e  is x x x x x x x x x x  in agreement with ourÐ � Ñ # $ & ' # $ & '
#

" " "1 i x 2 2 4 8
! 3! 5! 6! 3 30 90� � � � �á œ � � � � �á

 product calculation. The series for e sin x converges for all values of x.x

72. e e (cos bx i sin bx) ae (cos bx i sin bx) e ( b sin bx bi cos bx)d d
dx dx

a ib ax ax axˆ ‰ c dÐ � Ñ œ � œ � � � �

 ae (cos bx i sin bx) bie (cos bx i sin bx) ae ibe (a ib)eœ � � � œ � œ �ax ax a ib x a ib x a ib xÐ � Ñ Ð � Ñ Ð � Ñ
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73. (a) e e (cos i sin )(cos i sin ) (cos cos sin sin ) i(sin cos sin cos )i i) )" # œ � � œ � � �) ) ) ) ) ) ) ) ) ) ) )" " # # " # " # " # # "

 cos( ) i sin( ) eœ � � � œ) ) ) )" # " #
Ð � Ñi ) )" #

 (b) e cos( ) i sin( ) cos i sin (cos i sin )� � " "
� �

i cos i sin 
cos i sin cos i sin e

) ) )

) ) ) )
œ � � � œ � œ � œ œ) ) ) ) ) ) ˆ ‰

i)

74. e C iC e (cos bx i sin bx) C iCa bi a bi
a b a b

a bi x ax� �
� �

Ð � Ñ
" # " ## # # #� � œ � � �ˆ ‰

 (a cos bx ia sin bx ib cos bx b sin bx) C iCœ � � � � �e
a b

ax

# #� " #

 [(a cos bx b sin bx) (a sin bx b cos bx)i] C iCœ � � � � �e
a b

ax

# #� " #

 C iC ;œ � � �e (a cos bx b sin bx) ie (a sin bx b cos bx)
a b a b

ax ax� �
� �" ## # # #

 e e e e (cos bx i sin bx) e  cos bx ie  sin bx, so that givenÐ � Ña bi x ax ibx ax ax axœ œ � œ �

 e  dx e C iC  we conclude that e  cos bx dx C' 'Ð � Ñ Ð � Ñ�
� �" # "

�a bi x a bi x axa bi
a b a b

e (a cos bx b sin bx)œ � � œ �# # # #

ax

 and e  sin bx dx C' ax e (a sin bx b cos bx)
a bœ �

ax �
� ## #

CHAPTER 10 PRACTICE EXERCISES

 1. converges to 1, since  lim  a  lim  1 1
n nÄ _ Ä _n

( 1)
nœ � œŠ ‹� n

 2. converges to 0, since 0 a ,  lim  0 0,  lim   0 using the Sandwich Theorem for SequencesŸ Ÿ œ œn
2 2

n nÈ Èn nÄ _ Ä _

 3. converges to 1, since  lim  a  lim   lim  1 1� œ œ � œ �
n n nÄ _ Ä _ Ä _n

1 2
2

ˆ ‰ ˆ ‰� "
#

n

n n

 4. converges to 1, since  lim  a  lim  1 (0.9) 1 0 1
n nÄ _ Ä _n œ � œ � œc dn

 5. diverges, since sin 0 1 0 1 0 1˜ ™ e fn1
# œ ß ß ß� ß ß ßá

 6. converges to 0, since {sin n } {0 0 0 }1 œ ß ß ßá

 7. converges to 0, since  lim  a  lim   2  lim   0
n n nÄ _ Ä _ Ä _n

ln n
n 1œ œ œ

# Š ‹"n

 8. converges to 0, since  lim  a  lim    lim   0
n n nÄ _ Ä _ Ä _n

ln (2n )
n 1œ œ œ�" Š ‹2

2n 1�

 9. converges to 1, since  lim  a  lim   lim   1
n n nÄ _ Ä _ Ä _n

n ln n
n 1

1
œ œ œˆ ‰�

�Š ‹"n

10. converges to 0, since  lim  a  lim    lim    lim    lim   0
n n n n nÄ _ Ä _ Ä _ Ä _ Ä _n

ln 2n 1
n 1 6n n

12n 2œ œ œ œ œa b Š ‹$

#

�
6n

2n 1

#

$ �

11. converges to e , since  lim  a  lim   lim  1 e  by Theorem 5� �5 5
n

n n

n n nÄ _ Ä _ Ä _
œ œ � œˆ ‰ Š ‹n 5

n n
( 5)� �

12. converges to , since  lim  a  lim  1  lim    by Theorem 5" " " "
�e n en 1n n nÄ _ Ä _ Ä _

œ � œ œˆ ‰�n ˆ ‰"
n

n

13. converges to 3, since  lim  a  lim   lim   3 by Theorem 5
n n nÄ _ Ä _ Ä _n

3 3 3
n 1

1 n

nœ œ œ œˆ ‰n

1 n

Î
Î

14. converges to 1, since  lim  a  lim   lim   1 by Theorem 5
n n nÄ _ Ä _ Ä _n

3 3 1
n 1

1 n

nœ œ œ œˆ ‰ Î 1 n

1 n

Î

Î
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15. converges to ln 2, since  lim  a  lim  n 2 1  lim    lim    lim  2  ln 2
n n n n nÄ _ Ä _ Ä _ Ä _ Ä _n

2 1œ � œ œ œa b1 n 1 nÎ Î
1 nÎ �Š ‹"

� Î

#

�"
#n

2  ln 21 n

n

n

– —
Š ‹

Š ‹

 2 ln 2 ln 2œ œ!
†

16. converges to 1, since  lim  a  lim  2n 1  lim  exp  lim  exp e 1
n n n nÄ _ Ä _ Ä _ Ä _n

ln (2n 1)
n 1œ � œ œ œ œÈ Š ‹ Œ �n � !

2
2n 1�

17. diverges, since  lim  a  lim    lim  (n 1)
n n nÄ _ Ä _ Ä _n

(n 1)!
n!œ œ � œ _�

18. converges to 0, since  lim  a  lim   0 by Theorem 5
n nÄ _ Ä _n

( 4)
n!œ œ� n

19.   s"
� � # � � # � � �(2n 3)(2n 1) n 3 2n 1 3 5 5 7 n 3 2n 1 3 2n 1nœ � Ê œ � � � �á � � œ �

Š ‹ Š ‹ Š ‹ Š ‹ Š ‹ Š ‹ Š ‹ Š ‹ Š ‹ Š ‹" " " " " " " " " "

# # # # # # # # # #– — – — – —
   lim  s  lim  Ê œ � œ

n nÄ _ Ä _n 6 2n 1 6– —" "
�

Š ‹"
#

20.   s    lim  s� � � � �
� � # � # �
2 2 2 2 2 2 2 2 2 2 2

n(n 1) n n 1 3 3 4 n n 1 n 1n nœ � Ê œ � � � �á � � œ � � Êˆ ‰ ˆ ‰ ˆ ‰
n Ä _

  lim  1 1œ � � œ �
n Ä _

ˆ ‰2
n 1�

21.   s9 3 3 3 3 3 3 3 3 3 3
(3n 1)(3n 2) 3n 1 3n 2 5 5 8 8 11 3n 1 3n 2n� � � � # � �œ � Ê œ � � � � � �á � �ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰

    lim  s  lim  œ � Ê œ � œ3 3 3 3 3
3n 3n 2n# �# # � #n nÄ _ Ä _

ˆ ‰
22.   s� � � � � �

� � � � � �
8 2 2 2 2 2 2 2 2 2 2

(4n 3)(4n 1) 4n 3 4n 1 9 13 13 17 17 21 4n 3 4n 1œ � Ê œ � � � � � �á � �n ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰
    lim  s  lim  œ � � Ê œ � � œ �2 2 2 2 2

9 4n 1 9 4n 1 9� �n nÄ _ Ä _n ˆ ‰
23.  e   , a convergent geometric series with r  and a 1  the sum is ! !_ _

œ œn 0 n 0

� " " "

� �
n

e e e 11

eœ œ œ Ê œn Š ‹"e

24.  ( 1)   a convergent geometric series with r  and a   the sum is! ! ˆ ‰ ˆ ‰_ _

œ œn 1 n 0
� œ � œ � œ Ên n3 3 3

4 4 4 4 4n
�" " �

 
ˆ ‰ˆ ‰�

�

3
4

41
3
5�" œ �

25. diverges, a p-series with p œ "
#

26.   5   , diverges since it is a nonzero multiple of the divergent harmonic series! !_ _

œ œn 1 n 1

� "5
n nœ �

27. Since f(x)   f (x) 0  f(x) is decreasing  a a , and  lim  a  lim   0, thenœ Ê œ � � Ê Ê � œ œ
Ä _

" "w
# �x x n 1 n n

1
n"Î# $Î# n Ä _ È

 series   converges by the Alternating Series Test.  Since  diverges, the given series converges conditional! !_ _

œ œn 1 n 1

( )
n n

�" "nÈ È ly.

28. converges absolutely by the Direct Comparison Test since  for n 1, which is the nth term of a convergent" "
#n n$ $�  

 p-series
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29. The given series does not converge absolutely by the Direct Comparison Test since , which is" "
� �ln (n 1) n 1�

 the nth term of a divergent series.  Since f(x)   f (x) 0 f(x) is decreasingœ Ê œ � � Ê" "
� � �

w
ln (x 1) (ln (x 1)) (x 1)#

 a a , and  lim  a  lim   0, the given series converges conditionally by the AlternatingÊ � œ œn 1 n ln (n 1)�
"
�n nÄ _ Ä _n

 Series Test.

30.   dx  lim    dx  lim  (ln x)   lim    the series' '
2 2

b b

2

_

" " " " "�"
#x(ln x) x(ln x) ln b ln 2 ln # #œ œ � œ � � œ Ê

b b bÄ _ Ä _ Ä _
c d ˆ ‰

 converges absolutely by the Integral Test

31. converges absolutely by the Direct Comparison Test since , the nth term of a convergent p-seriesln n n
n n n$ $ #� œ "

32. diverges by the Direct Comparison Test for e n  ln e ln n  n ln n  ln n ln (ln n)n n n nn n
� Ê � Ê � Ê �ˆ ‰

  n ln n ln (ln n)  , the nth term of the divergent harmonic seriesÊ � Ê �ln n
ln (ln n) n

"

33.  lim    lim   1 1  converges absolutely by the Limit Comparison Test
n nÄ _ Ä _

Š ‹
Š ‹

"

# �

"

#

n n 1

n

È
œ œ œ ÊÉ Èn

n 1
#

# �

34.  Since f(x)   f (x) 0 when x 2  a a  for n 2 and  lim   0, theœ Ê œ �   Ê �   œ3x 3n
x 1 n 1

3x 2 x
x 1 n 1 n

# #

$ $

$

$ #� �
w �

� �
a ba b n Ä _

 series converges by the Alternating Series Test.  The series does not converge absolutely:  By the Limit

 Comparison Test,  lim     lim   3.   Therefore the convergence is conditional.
n nÄ _ Ä _

Š ‹
ˆ ‰
3n

n   1

n

#

$ �

" œ œ3n
n 1

$

$ �

35. converges absolutely by the Ratio Test since  lim   lim   0 1
n nÄ _ Ä _

’ “n 2 n! n 2
(n 1)! n 1 (n 1)

� �
� � �† œ œ �#

36. diverges since  lim  a  lim    does not exist
n nÄ _ Ä _n

( ) n 1
2n n 1œ �" �

� �

n a b#

#

37. converges absolutely by the Ratio Test since  lim   lim   0 1
n nÄ _ Ä _

’ “3 n! 3
(n 1)! 3 n 1

n 1

n

�

� �† œ œ �

38. converges absolutely by the Root Test since  lim  a  lim   lim   0 1
n n nÄ _ Ä _ Ä _

È Én n n n

nn œ œ œ �2 3 6
n n

39. converges absolutely by the Limit Comparison Test since  lim    lim   1
n nÄ _ Ä _

Š ‹
Š ‹

"

$Î#

"
� �

n

n(n 1)(n 2)È

œ œÉ n(n 1)(n 2)
n

� �
$

40. converges absolutely by the Limit Comparison Test since  lim    lim   1
n nÄ _ Ä _

Š ‹
Š ‹

"

#

"

# �

n

n n 1È

œ œÉ n n 1
n

# #

%

a b�

41.  lim   1   lim   1    lim  1  1
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ ˆ ‰u
u (n 1)3 (x 4) 3 n 1 3

(x 4) n3 nx 4 x 4n 1

n

n 1

n 1 n

n
�

�

�� Ê � Ê � Ê ��
� � �

� �
†

k k k k

  x 4 3  3 x 4 3  7 x 1; at x 7 we have  , the alternatingÊ � � Ê � � � � Ê � � � � œ � œk k ! !_ _

œ œn 1 n 1

( 1) 3 ( )
n3 n

� �"n n n

n

 harmonic series, which converges conditionally; at x 1 we have   , the divergent harmonic seriesœ � œ! !_ _

œ œn 1 n 1

3
n3 n

n

n
"

 (a) the radius is 3; the interval of convergence is 7 x 1� Ÿ � �

 (b) the interval of absolute convergence is 7 x 1� � � �

 (c) the series converges conditionally at x 7œ �
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42.  lim   1   lim   1  (x 1)   lim   0 1, which holds for all x
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹u
u (2n 1)! (x 1) ( n)(2n 1)

(x 1) (2n 1)!n 1

n

� � Ê � Ê � œ �� �
� � # �

# "2n

2n 2†

�

 (a) the radius is ; the series converges for all x_

 (b) the series converges absolutely for all x
 (c) there are no values for which the series converges conditionally

43.  lim   1   lim   1  3x 1   lim   1  3x 1 1
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ k k k ku
u (n 1) (3x 1) (n 1)

(3x 1) n nn 1

n

n 1

n
�

�

# #

# #

� Ê � Ê � � Ê � ��
� � �†

  1 3x 1 1  0 3x 2  0 x ; at x 0 we have Ê � � � � Ê � � Ê � � œ œ2
3 n n

( 1) ( 1) ( )! !_ _

œ œn 1 n 1

� � �"n 1 n 2n 1� �

# #

  , a nonzero constant multiple of a convergent p-series, which is absolutely convergent; at x  weœ � œ!_
œn 1

"
n 3

2
#

 have  , which converges absolutely! !_ _

œ œn 1 n 1

( 1) (1) ( )
n n

� �"n 1 n n 1� �

# #œ

 (a) the radius is ; the interval of convergence is 0 x"
3 3

2Ÿ Ÿ

 (b) the interval of absolute convergence is 0 xŸ Ÿ 2
3

 (c) there are no values for which the series converges conditionally

44.  lim   1   lim   1    lim  1
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ ¸ ¸u
u 2n 3 2 n 1 (2x 1) 2 2n 3 n 1

n 2 2n 1 2 n 2 2n(2x 1) 2x 1n 1

n

n 1

n 1 n

n
�

�

�� Ê � Ê �� � � �"
� � � � �

� �
† † † †

k k
  (1) 1  2x 1 2  2 2x 1 2  3 2x 1  x ; at x  we haveÊ � Ê � � Ê � � � � Ê � � � Ê � � � œ �k k2x 1 3 3�

# # # #
"k k

   which diverges by the nth-Term Test for Divergence since! !_ _

œ œn 1 n 1

n 1
2n 1 2n 1

( 2) ( ) (n 1)�
� # �

� �" �
†

n n

n œ

  lim  0; at x  we have , which diverges by the nth-Term Test
n Ä _

ˆ ‰ ! !n 1 n 1 2 n
2n 1 2n 1 2n 1
� " " � �"
� # # � # �œ Á œ œ

_ _

œ œn 1 n 1
†

n

n

 (a) the radius is 1; the interval of convergence is x� � �3
# #

"

 (b) the interval of absolute convergence is x� � �3
# #

"

 (c) there are no values for which the series converges conditionally

45.  lim   1   lim   1  x   lim  1    lim  1
n n n nÄ _ Ä _ Ä _ Ä _

¹ ¹ ¹ ¹ k k ¸ ¸ ˆ ‰ˆ ‰ ˆ ‰u
u (n 1) x n 1 n 1 e n 1

x n n n xn 1

n

n 1 n

n 1 n
�

�

�� Ê � Ê � Ê �� � � �
" "

†

k k
  0 1, which holds for all xÊ �k kx

e †

 (a) the radius is ; the series converges for all x_

 (b) the series converges absolutely for all x
 (c) there are no values for which the series converges conditionally

46.  lim   1   lim   1  x   lim  1  x 1; when x 1 we have
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ k k k kÉu
u x n 1

x n
n 1

nn 1

n

n 1

n
�

�

� Ê � Ê � Ê � œ �È È
� �†

 , which converges by the Alternating Series Test; when x 1 we have   , a divergent p-series! !_

œn 1

( 1)
n n

� "nÈ Èœ
_

œn 1

 (a) the radius is 1; the interval of convergence is 1 x 1� Ÿ �

 (b) the interval of absolute convergence is 1 x 1� � �

 (c) the series converges conditionally at x 1œ �

47.  lim   1   lim   1    lim  1  3 x 3;
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ ˆ ‰ È Èu
u 3 (n 1)x 3 n 1

(n 2)x 3 x n 2n 1

n

2n 1

n 1 2n 1

n
�

�

� �

#

� Ê � Ê � Ê � � ��
� �

�
†

 the series  and  , obtained with x 3, both diverge! ! È_ _

œ œn 1 n 1
� œ „n 1 n 1

3 3
� �È È

 (a) the radius is 3; the interval of convergence is 3 x 3È È È� � �

 (b) the interval of absolute convergence is 3 x 3� � �È È
 (c) there are no values for which the series converges conditionally
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48.  lim   1   lim   1  (x 1)   lim  1  (x 1) (1) 1
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ ˆ ‰u
u 2n 3 (x 1) 2n 3

(x 1)x 2n 1 2n 1n 1

n

2n 3

2n 1
�

�

�� Ê � Ê � � Ê � ��
� � �

� �# #
†

  (x 1) 1  x 1 1  1 x 1 1  0 x 2; at x 0 we have Ê � � Ê � � Ê � � � � Ê � � œ# � �
# �k k !_

œn 1

( 1) ( 1)
n 1

n 2n 1�

   which converges conditionally by the Alternating Series Test and the factœ œ! !_ _

œ œn 1 n 1

( 1) ( 1)
2n 1 2n 1
� �

� �

3n 1� n 1�

 that   diverges; at x 2 we have   , which also converges conditionally! ! !_ _ _

œ œ œn 1 n 1 n 1

"
� � �

� �
2n 1 2n 1 2n 1

( 1) (1) ( 1)œ œ
n 2n 1 n�

 (a) the radius is 1; the interval of convergence is 0 x 2Ÿ Ÿ

 (b) the interval of absolute convergence is 0 x 2� �

 (c) the series converges conditionally at x 0 and x 2œ œ

49.  lim   1   lim   1  x   lim   1
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ k k » »u
u csch (n)x

csch (n 1)xn 1

n

n 1

n
�

�

� Ê � Ê ��
Š ‹

ˆ ‰
2

e en 1 n 1

2
e en n

� � ��

� �

  x   lim   1  1  e x e; the series e  csch n, obtained with x e,Ê � Ê � Ê � � � „ œ „k k a b¹ ¹ !
n Ä _

e e
1 e e

x n�" � �

� �

�
�

2n 1

2n 2
k k _

œn 1

 both diverge since  lim  e)  csch n 0
n Ä _

a„ Án

 (a) the radius is e; the interval of convergence is e x e� � �

 (b) the interval of absolute convergence is e x e� � �

 (c) there are no values for which the series converges conditionally

50.  lim   1   lim   1  x   lim   1  x 1
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ ¹ ¹k k k ku
u x  coth (n) 1 e 1 e

x  coth (n 1) 1 e 1 en 1

n

n 1

n 2n 2 2n

2n 2 2n
�

� � � �

� � �� Ê � Ê � Ê �� � �
� �†

  1 x 1; the series 1  coth n, obtained with x 1, both diverge since  lim  1  coth n 0Ê � � � „ œ „ „ Á!a b a b_

œn 1

n n
n Ä _

 (a) the radius is 1; the interval of convergence is 1 x 1� � �

 (b) the interval of absolute convergence is 1 x 1� � �

 (c) there are no values for which the series converges  conditionally

51. The given series has the form 1 x x x ( x) , where x ; the sum is � � � �á � � �á œ œ œ# $ " " "
� �

n
1 x 4 51

4ˆ ‰"
4

52. The given series has the form x ( 1)  ln (1 x), where x ; the sum is� � �á � � �á œ � œx x x 2
3 n 3

n 1# $

#
� n

 ln 0.510825624ˆ ‰5
3 ¸

53. The given series has the form x ( 1)  sin x, where x ; the sum is sin 0� � �á � � �á œ œ œx x x
3! 5! (2n 1)!

n$ & �2n 1

� 1 1

54. The given series has the form 1 ( 1)  cos x, where x ; the sum is cos � � �á � � �á œ œ œx x x
2! 4! (2n)! 3 3

n# % 2n
1 1 "

#

55. The given series has the form 1 x e , where x ln 2; the sum is e 2� � � �á � �á œ œ œx x x
2! 3! n!

x ln 2# # n Ð Ñ

56. The given series has the form x ( 1)  tan x, where x ; the sum is� � �á � � �á œ œx x x
3 5 (2n 1)

n
3

$ & �2n 1

�
�" "È

 tan�" "Š ‹È3 6œ 1

57. Consider  as the sum of a convergent geometric series with a 1 and r 2x  " "
� �1 2x 1 2xœ œ Ê

 1 (2x) (2x) (2x)  (2x)  2 x  where 2x 1  xœ � � � �á œ œ � Ê �# $ "
#

! ! k k k k_ _

œ œn 0 n 0

n n n
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58. Consider  as the sum of a convergent geometric series with a 1 and r x   " " "
� � � �

$
1 x 1 x 1 x$ $ $œ œ � Ê œ a b

 1 x x x  ( 1) x  where x 1  x 1 x 1œ � � � � � � �á œ � � � Ê � Ê �a b a b a b k k k k k k!$ $ $ $ $# $
_

œn 0

n 3n

59. sin x    sin x   œ Ê œ œ! ! !_ _ _

œ œ œn 0 n 0 n 0

( 1) x ( 1) ( x) ( 1) x
(2n 1)! (2n 1)! ( n 1)!
� � �

� � # �

n 2n 1 n 2n 1 n 2n 1 2n 1� � � �

1
1 1

60. sin x     sin   œ Ê œ œ! ! !_ _ _

œ œ œn 0 n 0 n 0

( 1) x ( 1) 2 x
(2n 1)! 3 (2n 1)! 3 ( n 1)!

2x ( 1)� �
� � # �

�n 2n 1 n 2n 1 2n 1
n

2n 1

2n 1

� � �

�

�

Š ‹2x
3

61. cos x    cos x   œ Ê œ œ! ! !ˆ ‰_ _ _

œ œ œn 0 n 0 n 0

( 1) x ( 1) x
(2n)! (2n)! ( n)!

5 3 ( 1) x� �Î �

#

n 2n n 10n 3n 5 3 2nˆ ‰Î Î

62. cos x    cos   œ Ê œ œ! ! !Š ‹_ _ _

œ œ œn 0 n 0 n 0

( 1) x ( 1) x
(2n)! (2n)! 5 ( n)!

x
5

( 1)� ��

#

n 2n n 6n3
n x3

5

2n

nÈ
Š ‹È

63. e     e    x x 2x x
n! n! n!

n 0
œ Ê œ œ! ! !_ _

œ œn 0 n 0

n n nx n

n
Ð Î Ñ

_

œ
#

1 1
ˆ ‰1

#

64. e     e    x xx
n! n! n!

x ( 1) xœ Ê œ œ! ! !_ _ _

œ œ œn 0 n 0 n 0

n n n 2n
� � �# #a b

65. f(x) 3 x 3 x   f (x) x 3 x   f (x) x 3 x 3 xœ � œ � Ê œ � Ê œ � � � �È a b a b a b a b# # w # ww # # #"Î# �"Î# �$Î# �"Î#

  f (x) 3x 3 x 3x 3 x ; f( 1) 2, f ( 1) ,  f ( 1) ,Ê œ � � � � œ � œ � � œ � � œwww $ # # w ww�&Î# �$Î# " " "
# #a b a b 8 8

3

  f ( 1)   3 x 2www # � � �� œ � � œ Ê � œ � � � �á3 3 9
32 8 32 2 1! 2 2! 2 3!

(x 1) 3(x 1) 9(x 1)È
† † †

# $

$ &

66. f(x) (1 x)   f (x) (1 x)    f (x) 2(1 x)  f (x) 6(1 x) ;  f(2) 1, f (2) 1,œ œ � Ê œ � Ê œ � Ê œ � œ � œ"
�

�" w �# ww �$ www �% w
1 x

  f (2) 2, f (2) 6  1 (x 2) (x 2) (x 2)ww www # $"
�œ � œ Ê œ � � � � � � � �á1 x

67. f(x) (x 1)   f (x) (x 1)    f (x) 2(x 1)   f (x) 6(x 1) ;  f(3) ,œ œ � Ê œ � � Ê œ � Ê œ � � œ" "
�

�" w �# ww �$ www �%
x 1 4

 f (3) ,  f (3) , f (2)   (x 3) (x 3) (x 3)w ww www # $" � " " " " "
�œ � œ œ Ê œ � � � � � � �á4 4 x 1 4 4 4

2 6
4 4# $ # $% %

68. f(x) x   f (x) x    f (x) 2x   f (x) 6x ;  f(a) , f (a) ,  f (a) ,œ œ Ê œ � Ê œ Ê œ � œ œ � œ" " "�" w �# ww �$ www �% w ww
x a a a

2
# $

 f (a)   (x a) (x a) (x a)www # $� " " " " "œ Ê œ � � � � � � �á6
a ax a a a% %# $

69. exp x  dx 1 x  dx x' '
0 0

1 2 1 2Î Îa b Š ‹ ’ “� œ � � � � �á œ � � � � �á$ $
"Î#

!

x x x x x x x
2! 3! 4! 4 7 2! 10 3! 13 4!

' * "# % ( "! "$

† † †

 0.484917143¸ � � � � � ¸" " " " " "
# # #% ( "! "$ "'

† † † † † † † † †4 7 2! 2 10 3! 2 13 4! 2 16 5!

70. x sin x  dx x x  dx x  dx' ' '
0 0 0

1 1 1a b Š ‹ Š ‹$ $ %œ � � � � �á œ � � � � �áx x x x x x x x
3! 5! 7! 9! 3! 5! 7! 9!

* "& #" #( "! "' ## #)

 0.185330149œ � � � � �á ¸’ “x x x x x
5 11 3! 17 5! 23 7! 29 9!

& "" "( #$ #*

† † † †

"

!

71.   dx 1  dx x' '
1 1

1 2 1 2Î Î
tan x x x x x x x x x x x

x 3 5 7 9 11 9 25 49 81 121

�" # % ' ) "! $ & ( * ""

œ � � � � � �á œ � � � � � �áŠ ‹ ’ “ "Î#

!

 0.4872223583¸ � � � � � � � � � � ¸" " " " " " " " " " "
# # # ## #9 2 5 9 2 11 2 13 2 15 2 19 217 17† † † † † † † †† †

$ # & # * # "" # "$ # "& # "* # #"# ( # "(
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72.   dx  x  dx x x x x  dx' ' '
0 0 0

1 64 1 64 1 64Î Î Î
tan x x x x

x x 3 5 7 3 5 7

�" $ & (È Èœ � � � �á œ � � � �á" " " ""Î# &Î# *Î# "$Î#Š ‹ ˆ ‰
 x x x x 0.0013020379œ � � � �á œ � � � �á ¸� ‘ ˆ ‰2 2 2 2 2 2 2 2

3 1 55 105 3 8 55 8 105 821 8
$Î# (Î# ""Î# "&Î#

#

"Î'%

! † † ††

$ "" "&(

73.  lim    lim    lim   
x 0 x 0 x 0Ä Ä Ä

7 sin x 7
e 12x � #œ œ œ

7 x 7 1

2x 2

Š ‹ Š ‹
Š ‹ Š ‹

� � �á � � �á

� � �á � � �á

x x x x
3! 5! 3! 5!

2 x 2 x 2 x 2 x
2! 3! ! 3!

$ & # %

# # $ $ # $ #

#

74.  lim    lim    lim   
) ) )Ä Ä Ä0 0 0

e e 2
sin 

) )� �
�

�

)

) )
œ œ

Š ‹ Š ‹ Š ‹
Š ‹ Š ‹

1 1 2 2� � � �á � � � � �á � � �á

� � � �á �

) ) )

) )

) ) ) ) ) )

) ) ) )

# $ # $ $ &

# #

$ & $ &

! 3! ! 3! 3! 5!

3! 5! 3! 5! �á

  lim   2œ œ
) Ä 0

2Š ‹
Š ‹

"
#

" #

3! 5!

3! 5!

� �á

� �á

)

)

75.  lim   lim    lim    lim   
t 0 t 0 t 0 t 0Ä Ä Ä Ä

ˆ ‰" " � �
#� �

� �

2 cos t t 2t (1 cos t)
t 2 2 cos t

t 2 2 2

2t
� œ œ œ# #

#

#

#

Œ � Œ �
Š ‹

1

1 1

� � �á

� � � �á

t t t
4! 4!

t t
4!

# % %

#

# %

#

� �á

� �á

t
6!

2t
4!

'

%
'Š ‹t

  lim   œ œ
t 0Ä

2

1

Š ‹
Š ‹

"
#

#

4! 6!
t

2t
4!

� �á

� �á1
"
#

76.  lim    lim   
h 0 h 0Ä Ä

Š ‹ Œ � Œ �sin h
h

h h h h
3! 5! ! 4!� �cos h

h h# #œ
1 1� � �á � � �á

# % # %

#

  lim    lim   œ œ � � � � � �á œ
h 0 h 0Ä Ä

Œ �h h h h h h
! 3! 5! 4! 6! 7!

# # % % ' '

#
� � � � � �á

h ! 3! 5! 4! 6! 7! 3
h h h h

#

# # % %Š ‹" " "
#

77.  lim    lim    lim   
z 0 z 0 z 0Ä Ä Ä

"�
� �

� � �

�

cos z
ln (1 z) sin z

1 1 z z

z z

#

# #

œ œ
Š ‹ Š ‹

Š ‹ Š ‹ Š ‹
z z
3 3

z z z z z 2z z
3 3! 5! 3 4

% %

# $ $ & # $ %

# #

�á � �á

� � �á � � � �á � � � �á

  lim   2œ œ �
z 0Ä

Š ‹
Š ‹

1� �á

� � � �á

z
3

2z z
3 4

#

"

#

#

78.  lim    lim    lim   
y 0 y 0 y 0Ä Ä Ä

y y y
cos y cosh y

1 1

# # #

�
� � �

œ œŒ � Œ � Œ �y y y y y y 2y 2y
4! 6! ! 4! 6! 6!

# % ' # % ' # '

# # #
� � �á � � �á � � �á

  lim   1œ œ �
y 0Ä

"

� � �áŒ �1 2y
6!

%

79.  lim  s  lim  s  lim  s 0
x 0 x 0 x 0Ä Ä Ä

ˆ ‰ – — Š ‹sin 3x r r 3 9 81x r
x x x x x 40 x

3x
$ # $ # # #

$ &

#

� � œ � � œ � � �á � � œ
Š ‹� � �á

#

(3x) (3x)
6 120

  0 and s 0  r 3 and sÊ � œ � œ Ê œ � œr 3 9 9
x x# # # #

80. The approximation sin x  is better than sin x x.¸ ¸6x
6 x� #
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81.  lim   1  x   lim   1  x
n nÄ _ Ä _

¹ ¹ k k k k¸ ¸2 5 8 (3n 1)(3n 2)x 2 4 6 (2n)
4 6 (2n)(2n 2) 5 8 (3n 1)x 2n 2 3

3n 2 2† † † †

† † † †

â � � â
# â � # â � �

�n 1

n

�

† � Ê � Ê �

  the radius of convergence is Ê 2
3

82.  lim   1  x   lim   1  x
n nÄ _ Ä _

¹ ¹ k k k k¸ ¸3 5 7 (2n 1)(2n 3)(x 1) 4 9 14 (5n 1)
4 9 14 (5n 1)(5n 4) 3 5 7 (2n 1)x 5n 4 2

2n 3 5† † † †

† † † †

â � � � â �
â � � â � �

�n 1

n

�

† � Ê � Ê �

  the radius of convergence is Ê 5
2

83.  ln 1  ln 1 ln 1  ln (k 1) ln k ln (k 1) ln k! ! !ˆ ‰ � ‘ˆ ‰ ˆ ‰ c dn n n

k 2 k 2 k 2œ œ œ

� œ � � � œ � � � � �" " "
k k k#

 ln 3 ln 2 ln 1 ln 2 ln 4 ln 3 ln 2 ln 3 ln 5 ln 4 ln 3 ln 4 ln 6 ln 5 ln 4 ln 5œ � � � � � � � � � � � � � � �c d c d c d c d
 ln (n 1) ln n ln (n 1) ln n ln 1 ln 2 ln (n 1) ln n  after cancellation�á � � � � � � œ � � � �c d c d c d
  ln 1 ln    ln 1  lim  ln ln  is the sumÊ � œ Ê � œ œ! !ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰n

k 2 k 2œ œ

" � " � "
#k 2n k 2n

n 1 n 1
# #

_

n Ä _

84.  -  ! !ˆ ‰ �ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰n n

k 2 k 2œ œ

" " " " " " " " " " " " " "
� # � � # # �#k 1 k 1 k 1 1 3 4 3 5 4 6 n n

1
# œ � œ � � � � � � � �á � �

 � � œ � � � œ � � œ œ‘ ˆ ‰ ˆ ‰ˆ ‰ ’ “" " " " " " " " " " " � �
� � # # � # # � # � �

� � � �
n 1 n 1 1 n n 1 n n 1 2n(n 1) 4n(n 1)

3 3n n 23n(n 1) 2(n 1) 2n #

    lim  Ê œ � � œ! ˆ ‰_

k 2œ

" "
� # �k 1 2 n n 1 4

3 1 1 3
# n Ä _

85. (a)  lim   1  x   lim   
n nÄ _ Ä _

¹ ¹ k k1 4 7 (3n 2)(3n 1)x (3n)! (3n )
(3n 3)! 1 4 7 (3n 2)x (3n 1)(3n 2)(3n 3)

† †

† †

â � � �"
� â � � � �

$
3n 3

3n

�

† � Ê

 x 0 1  the radius of convergence is œ � Ê _k k$ †

 (b) y 1  x    xœ � Ê œ! !_ _

œ œn 1 n 1

1 4 7 (3n 2) dy 1 4 7 (3n 2)
(3n)! dx (3n 1)!

† † † †â � â �
�

3n 3n 1�

   x x  xÊ œ œ �d y 1 4 7 (3n 2) 1 4 7 (3n 5)
dx (3n 2)! (3n 3)!

#

#
! !_ _

œ œn 1 n 2

† † † †â � â �
� �

3n 2 3n 2� �

 x 1  x xy 0  a 1 and b 0œ � œ � Ê œ œŒ �!_
œn 1

1 4 7 (3n 2)
(3n)!

† † â � 3n

86. (a) x x ( x) x ( x) x ( x) x x x x  ( 1) x  whichx x
1 x 1 ( x)

n n# #

� � �
# # # # # $ # $ % &œ œ � � � � � � �á œ � � � �á œ �!_

œn 2

 converges absolutely for x 1k k �
 (b) x 1   ( 1) x  ( 1)  which divergesœ Ê � œ �! !_ _

œ œn 2 n 2

n n n

87. Yes, the series  a b  converges as we now show.  Since a  converges it follows that a   0  a 1! !_ _

œ œn 1 n 1
n n n n nÄ Ê �

 for n some index N  a b b  for n N  a b  converges by the Direct Comparison Test with   b� Ê � � Ên n n n n n! !_ _

œ œn 1 n 1

88. No, the series a b  might diverge (as it would if a  and b  both equaled n) or it might converge (as it would if!_
œn 1

n n n n

 a  and b  both equaled ).n n n
"

89. (x x )  lim   (x x )  lim  (x x )  lim  (x ) x   both the series and! !_ _

œ œn 1 1
n 1 n k 1 k n 1 n 1� � � " � "� œ � œ � œ � Ê

n n nÄ _ Ä _ Ä _
k

 sequence must either converge or diverge.
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90. It converges by the Limit Comparison Test since  lim    lim   1 because a  converges
n nÄ _ Ä _

Š ‹an
1 an

n

�

a œ œ"
�1 a n

n
!_
œn 1

 and so a 0.n Ä

91.  a a a a a! ˆ ‰ ˆ ‰ ˆ ‰_

œn 1

a
n 3 4 3 4 5 6 7 8

a a an œ � � � �á   � � � � � � �" " # % )# #
" " " " " " "# $ %

 a (a a a a ) which is a divergent series� � � �á � �á   � � � �áˆ ‰" " " " "
"' # % ) "'#9 10 11 16

92. a  for n 2  a a a , and n ln n ln ln 4 ln 8 ln  ln 2 3 ln 2œ   Ê       á � � �á œ � � �á" " " " " " "
# $ % # # #

 1  which diverges so that 1   diverges by the Integral Test.œ � � �á �" " " "
# #ln 3 n ln n
ˆ ‰ !_

œn 2

CHAPTER 10 ADDITIONAL AND ADVANCED EXERCISES

 1. converges since  and  converges by the Limit Comparison Test:" " "
�# � �(3n ) (3n 2) (3n 2)Ð � ÑÎ $Î# $Î#2n 1 2 � !_

œn 1

  lim    lim  3
n nÄ _ Ä _

Š ‹
Š ‹

"

$Î#

"

� $Î#

n

(3n 2)

œ œˆ ‰3n 2
n
� $Î# $Î#

 2. converges by the Integral Test:  tan x   lim   lim  '
1

b_

"

a b ’ “ ’ “�" #

�
dx

x 1 3 3 192
tan x tan b

#

�" �"$ $
$

œ œ �
b bÄ _ Ä _

a b a b 1

 œ � œŠ ‹1 1 1
$ $ $

24 192 192
7

 3. diverges by the nth-Term Test since  lim  a  lim  ( 1)  tanh n  lim  ( 1)  lim  ( 1)
n n nbÄ _ Ä _ Ä _Ä _

n
n n n1 e

1 eœ � œ � œ �Š ‹�
�

�

�

2n

2n

 does not exist

 4. converges by the Direct Comparison Test:  n! n   ln (n!) n ln (n)  n� Ê � Ê �n ln (n!)
ln (n)

  log (n!) n  , which is the nth-term of a convergent p-seriesÊ � Ê �n
log (n!)

n n
n
$ #

"

 5. converges by the Direct Comparison Test:  a 1 , a , a" # $œ œ œ œ œ12 1 2 12 2 3 1 2
(1)(3)(2) 3 4 (2)(4)(3) 4 5 3 4# #

† † †

† † †

ˆ ‰ ˆ ‰
 , a ,   1   represents theœ œ œ á Ê �12 3 4 2 3 1 2 2 12

(3)(5)(4) 5 6 4 5 3 4 (4)(6)(5) (n 1)(n 3)(n 2)# # #%
"

� � �
ˆ ‰ ˆ ‰ ˆ ‰ !† † †

† † †

_

œn 1

 given series and , which is the nth-term of a convergent p-series12 12
(n 1)(n 3)(n 2) n� � � # %�

 6. converges by the Ratio Test:   lim    lim   0 1
n nÄ _ Ä _

a
a (n 1)(n 1)

nn 1

n

� œ œ �� �

 7. diverges by the nth-Term Test since if a   L as n  , then L   L L 1 0  L 0n 1 L
1 5Ä Ä _ œ Ê � � œ Ê œ Á"

� #
# � „È

 8. Split the given series into   and ; the first subseries is a convergent geometric series and the! !_ _

œ œn 1 n 1

"
3 3

2n
2n 1 2n�

 second converges by the Root Test:   lim   lim   1
n nÄ _ Ä _

Én
2n

n n2n 1
3 9 9 9

2 n
œ œ œ �

È È " "†

 9. f(x) cos x with a   f 0.5, f , f 0.5, f , f 0.5;œ œ Ê œ œ � œ � œ œ1 1 1 1 1 1

3 3 3 3 3 3
3 3ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰w www

# #
wwÈ È

Ð Ñ4

 cos x x x xœ � � � � � � �á" "
# # #

# $È È3 3
3 4 3 1 3

ˆ ‰ ˆ ‰ ˆ ‰1 1 1
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10. f(x) sin x with a 2   f(2 ) 0, f (2 ) 1, f (2 ) 0, f (2 ) 1, f (2 ) 0, f (2 ) 1,œ œ Ê œ œ œ œ � œ œ1 1 1 1 1 1 1
w wwwww Ð Ñ Ð Ñ4 5

 f (2 ) 0, f (2 ) 1; sin x (x 2 )Ð Ñ Ð Ñ6 7
1 1 1œ œ � œ � � � � �á(x 2 ) (x 2 ) (x 2 )

3! 5! 7!
� � �1 1 1

$ & (

11. e 1 x  with a 0x œ � � � �á œx x
! 3!

# $

#

12. f(x) ln x with a 1  f(1) 0, f (1) 1,  f (1) 1,f (1) 2, f (1) 6;œ œ Ê œ œ œ � œ œ �w wwwww Ð Ñ4

 ln x (x 1)œ � � � � �á(x 1) (x 1) (x 1)
3 4

� � �
#

# $ %

13. f(x) cos x with a 22   f(22 ) 1, f (22 ) 0,  f (22 ) 1, f (22 ) 0, f (22 ) ,œ œ Ê œ œ œ � œ œ "1 1 1 1 1 1
w wwwww Ð Ñ4

 f (22 ) 0, f (22 ) 1; cos x 1 (x 22 ) (x 22 ) (x 22 )Ð Ñ Ð Ñ5 6
1 1 1 1 1œ œ � œ � � � � � � �á" " "

#
# % '

4! 6!

14. f(x) tan x with a 1  f(1) , f (1) ,  f (1) , f (1) ;œ œ Ê œ œ œ � œ�" w www" " "
# # #

ww1

4

 tan x�" � � �œ � � � �á1

4 2 4 12
(x 1) (x 1) (x 1)# $

15. Yes, the sequence converges:  c a b   c b 1   lim  c ln bn œ � Ê œ � Ê œ �a b ˆ ‰ˆ ‰n n 1 n
n n

a
b n

n 1 n

n

ln 1Î Î

Ä_

�

n Ä _
lim

ˆ ‰ˆ ‰a
b

n

 ln b ln b ln b since 0 a b. Thus,  lim  c e b.œ � œ � œ � � œ œlim
n

ln 0 ln 

1 0 1 n
ln b

Ä_ �

†

�

ˆ ‰ ˆ ‰ ˆ ‰ˆ ‰
a a a
b b b

n

a
b

n n Ä _

16. 1 1  � � � � � � �á œ � � �2 3 7 2 3 7 2 3 7
10 10 10 10 10 10 10 1010# $ & ' � �%

! ! !_ _ _

œ œ œn 1 n 1 n 1
3n 2 3n 1 3n

 1     1œ � � � œ � � �! ! !_ _ _

œ œ œn 0 n 0 n 0

2 3 7
10 10 10 1 1 1

3n 1 3n 2 3n 3

2
10

10 10 10

3 7
10 10

� � � " " "$ $ $

# $ˆ ‰
ˆ ‰ ˆ ‰ ˆ ‰

Š ‹ Š ‹
� � �

 1œ � � � œ œ200 30 7 999 237 412
999 999 999 999 333

�

17. s     s    sn n n
dx dx dx dx dx

1 x 1 x 1 x 1 x 1 xœ Ê œ � �á � Ê œ!n 1

k 0

�

œ

' ' ' ' '
k 0 1 n 1 0

k 1 1 2 n n�

�� � � � �# # # # #

   lim  s  lim  tan n tan 0Ê œ � œ
n nÄ _ Ä _n a b�" �"

#
1

18.  lim    lim    lim   1
n n nÄ _ Ä _ Ä _

¹ ¹ ¹ ¹ ¹ ¹ ¸ ¸u
u (n 2)(2x 1) nx 2x 1 n(n 2) 2x 1

(n 1)x (n 1)(2x 1) (n 1)x xn 1

n

n 1 n

n 1 n
�

� #

�œ œ œ �� � � �
� � � � �† †

  x 2x 1 ; if x 0, x 2x 1   x 2x 1  x 1; if x 0, x 2x 1Ê � � � � � Ê � � Ê � � � � � � �k k k k k k k k k k k k"
#

  x 2x 1  3x 1  x  ; if x  , x 2x 1   x 2x 1  x 1.  Therefore,Ê � � � Ê � � Ê � � � � � � Ê � � � � Ê � �" "
#3 k k k k

 the series converges absolutely for x 1 and x .� � � � "
3

19. (a) No, the limit does not appear to depend on the value of the constant a
 (b) Yes, the limit depends on the value of b

 (c) s 1   ln s    lim  ln sœ � Ê œ Ê œŠ ‹cos
n

n ln 1ˆ ‰ Œ �
ˆ ‰

� �Œ �
Š ‹

a
n

n

�

�

cos a
n

n 1
cos a

n
n

a a a
n n n sin cos

n

n

ˆ ‰
ˆ ‰

ˆ ‰ ˆ ‰

" n Ä _

"

�

� �

#

"

#

  lim   1   lim  s e 0.3678794412; similarly,œ œ œ � Ê œ ¸
n nÄ _ Ä _

a a a
n n n

cos a
n

n

 sin cos

1

ˆ ‰ ˆ ‰�

�
ˆ ‰

0 1
1 0
�
�

�"

  lim  1 e
n Ä _

Š ‹� œ
cos

bn

n
1 bˆ ‰a

n � Î

20.  a  converges   lim  a 0;  lim   lim  ! ’ “ˆ ‰ ˆ ‰_

œn 1
n n

1 sin a 1 sin an 1 n 1 sin  lim  a 1 sin 0Ê œ œ œ œ
n n nÄ _ Ä _ Ä _

� �
# # # #

Î �
�n n

nŠ ‹nÄ_

   the series converges by the nth-Root Testœ Ê"
#
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21.  lim   1   lim   1  bx 1  x 5  b
n nÄ _ Ä _

¹ ¹ ¹ ¹ k ku
u ln (n 1) b x b b 5

b x ln nn 1

n

n 1 n 1

n n
�

� �

� Ê � Ê � Ê � � � œ Ê œ „�
" " "

†

22. A polynomial has only a finite number of nonzero terms in its Taylor series, but the functions sin x, ln x and
 e  have infinitely many nonzero terms in their Taylor expansions.x

23.  lim    lim    lim  x
x 0 x 0 x 0Ä Ä Ä

sin (ax) sin x x
x x x 3! 3! 5! 5!

ax x x a 2 a a� � � �á � � �á �
� " " #

$ $ #

$ &

œ œ � � � � �á
Š ‹ Š ‹a x x

3! 3!

$ $ $ ’ “Š ‹
 is finite if a 2 0  a 2;  lim   � œ Ê œ œ � � œ �

x 0Ä

sin 2x sin x x 2 7
x 3! 3! 6
� � "

$

$

24.  lim   1   lim   1   lim  1
x 0 x 0 x 0Ä Ä Ä

cos ax b b a a x
x x 2x 4 48

1 b
� "�

# #

� � �á �

# # #

# # #

œ � Ê œ � Ê � � �á œ �
Œ �a x a x

4!

# # % %

# Š ‹
  b 1 and a 2Ê œ œ „

25. (a) 1   C 2 1 and    convergesu
u n n n n

(n 1) 2n

n 1�

#

# # #œ œ � � Ê œ �� " "!_
œn 1

 (b) 1   C 1 1 and    divergesu
u n n n n

n 1 1 0n

n 1�
#œ œ � � Ê œ Ÿ� "!_

œn 1

26. 1 1  after long divisionu
u (2n 1) 4n 4n 1 n 4n 4n 1 n n

2n(2n 1) 4n 2n 5n

n 1�
# # # #

#

œ œ œ � � œ � ��
� � � � �

�
Š ‹ Š ‹ – —6 3

4

5n

4n 4n 1
#

#

#� �Š ‹

  C 1 and f(n) 5  u  converges by Raabe's TestÊ œ � œ œ Ÿ Ê3 5n 5
4n 4n 1 4

n# � � � �
k k !#

# Š ‹4
n n

"

#

_

œn 1

27. (a)  a L  a a   a a L  a  converges by the Direct Comparison Test! ! !_ _ _

œ œ œn 1 n 1 n 1
n n n nn nœ Ê Ÿ œ Ê# #

 (b) converges by the Limit Comparison Test:   lim    lim   1 since  a  converges and
n nÄ _ Ä _

Š ‹an
1 an�

a 1 a n
n n

œ œ"
�

!_
œn 1

 therefore  lim  a 0x Ä _ n œ

28. If 0 a 1 then ln (1 a ) ln (1 a ) a a a a ,� � � œ � � œ � � �á � � � �á œn n n n n
a a

3 1 an n
ak k # $

n n n

n# �
# $

 a positive term of a convergent series, by the Limit Comparison Test and Exercise 27b

29. (1 x) 1  x  where x 1  (1 x) nx  and when x  we have� œ � � Ê œ � œ œ�" �" �" "
� #

! !k k_ _

œ œn 1 n 1

n n 1
(1 x) dx

d
#

 4 1 2 3 4 nœ � � � �á � �áˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰" " " "
# # # #

# $ �n 1

30. (a) x   (n 1)x   n(n 1)x   n(n 1)x! ! ! !_ _ _ _

œ œ œ œn 1 n 1 n 1 n 1

n 1 n n 1 nx 2x x 2 2x
1 x (1 x) (1 x) (1 x)

� �
� � � �

�œ Ê � œ Ê � œ Ê � œ
# #

# $ $

   , x 1Ê œ œ �! k k_

œn 1

n(n 1)
x (x 1)

1

2x�

�
�n

2
x

xŠ ‹" $

#

$

 (b) x     x   x 3x x 1 0  x 1 1 1œ Ê œ Ê � � � œ Ê œ � � � �! Š ‹ Š ‹_

œn 1

n(n )
x (x 1) 9 9

2x 57 57�"
�

$ #
"Î$ "Î$

n

#

$

È È

 2.769292, using a CAS or calculator¸

31. (a) 1 x x x 1 2x 3x 4x nx" "
� �

# $ # $ �
(1 x) dx 1 x dx

d d n 1
# œ œ � � � �á œ � � � �á œˆ ‰ a b !_

œn 1

 (b) from part (a) we have n 6! ˆ ‰ ˆ ‰ ˆ ‰ ’ “_

œn 1

5
6 6 6

n 1

1

2� " " "
�

œ œˆ ‰5
6
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 (c) from part (a) we have np q!_
œn 1

n 1 q q
(1 p) q q

�
�

"œ œ œ# #

32. (a)  p  2 1 and E(x)  kp  k2   k2  2! ! ! ! ! ˆ ‰_ _ _ _ _

œ œ œ œ œk 1 k 1 k 1 k 1 k 1
k k

k k 1 k
1 1

œ œ œ œ œ œ œ œ� � �
�

" " "
# # �

ˆ ‰ˆ ‰ � ‘ˆ ‰
"

#

" #

#
"

#

 by Exercise 31(a)

 (b)  p     1 and E(x)  kp  k   k! ! ! ! ! !ˆ ‰ ˆ ‰ ˆ ‰’ “_ _ _ _ _ _

œ œ œ œ œ œk 1 k 1 k 1 k 1 k 1 k 1
k k

5 5 5 5
6 65 6 5 6 6

k k 1

1
œ œ œ œ œ œ œ

k 1 k 1

k k

5
6

5
6

� �" " "
�

�ˆ ‰̂ ‰
  6œ œˆ ‰" "

�6 1� ‘ˆ ‰5
6

#

 (c)  p    lim  1 1 and E(x)  kp  k
k

! ! ! ! !ˆ ‰ ˆ ‰ Š ‹_ _ _ _ _

œ œ œ œ œk 1 k 1 k 1 k 1 k 1
k kk(k 1) k k 1 k 1 k(k 1)œ œ � œ � œ œ œ

Ä _
" " " " "
� � � �

  , a divergent series so that E(x) does not existœ !_
œk 1

"
�k 1

33. (a) R C e C e C e   R  lim  Rnn n
kt 2kt nkt C e 1 e

1 e 1 e e 1
C e Cœ � �á � œ Ê œ œ œ

Ä _! ! !
� � � �

� � �
! ! !

!
� �! !

� �! ! !

! !
� !

kt nkt

kt kt kt

ktˆ ‰
 (b) R   R e 0.36787944 and R 0.58195028;n

e 1 e e 1 e
1 e 1 eœ Ê œ ¸ œ ¸

� � �" �"!

�" �"

1 na b a b� �
� �" "!

�"

 R 0.58197671; R R 0.00002643  0.0001œ ¸ � ¸ Ê �"
� "!

�
e 1 R

R R"!

 (c) R , 4.7541659; R   n n
e 1 e

1 e e 1 e 1 e 1
R R 1 eœ œ ¸ � Ê �

�Þ �Þ

�Þ Þ Þ Þ

�Þ1 1n

1 1 1 1

1nˆ ‰�

� # # � # � # �
" " � " "ˆ ‰ ˆ ‰ ˆ ‰

  1 e   e   ln   ln   n 6.93  n 7Ê � � Ê � Ê � � Ê � � Ê � Ê œ� Î � Î" " " "
# # # #

n 10 n 10 n n
10 10

ˆ ‰ ˆ ‰
34. (a) R   Re R C C   e   t  lnœ Ê œ � œ Ê œ Ê œC

e 1
kt kt

H
C C
C k C

!

!

! !
kt

H H

L L� ! !
" Š ‹

 (b) t  ln e 20 hrs!
"œ œ0.05

 (c) Give an initial dose that produces a concentration of 2 mg/ml followed every t  ln 69.31 hrs!
"
#œ ¸0.0 0.5

2ˆ ‰
 by a dose that raises the concentration by 1.5 mg/ml

 (d) t  ln 5 ln 6 hrs!
"œ œ ¸0.2 0.03 3

0.1 10ˆ ‰ ˆ ‰
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