CHAPTER 10 INFINITE SEQUENCES AND SERIES

10.1 SEQUENCES

a = 13 =

1 1 1 1
2' al:ﬁzl’aQZZ':E’aB:y:6’a4:ﬂ:ﬂ

2 1 21 _ 2 1 21
S M= = =T, BT g, M= =g
2.1 1 . 2-1_ 3 . _B-1_ 71 . _2-1_15
6 a; = 2 _2532_ 72 _4933_ 23 _8934_ 2 — 76
1_3 3,1 _ 7 7,1 _ 15 15, 1 _ 31 63
T a=la=lty=). 3=ty =,u= 3ty =5, 8=5 5= 53 = 5,
_ 127 _ 255 _ sl _ 1023
47 = 64 - 88 = 13889 = 356410 = 5pp
1 1 1
_ _1 _ @) _1 _ @ _ 1 _ () _ 1 _ 1 1 _ 1
8. ay=lay=5,@3="5 =g, 4= "4 =35,8= "5 = 55,8 = 755> 47 = 5505 > 8 = 75320 >
_ 1 1
49 = 355,880 > 410 = 3,628.800
_ =D _ _ DO 1 =D*(=3) 1 D (=3) 1
9 ai z’a_T_l7a3_ 2 _i,a_ P} 2 Z7a5 P} 4 g
_1 _ 1 _ 1 _ 1 _ 1
A6 = 16,7 = T 3-8 = T 51> = 198> 40 = 356
_ _ 12 _ 2 2, 3= 1, Ay 2
10 =2 m="F"=-ly="F"=-5a=—"3"=—5,8=—35° =—3,8%=—73,
2 _ 1 1
A7 =—37,88= " 3,8 = —§,310 = — 3

11. ay=1l,as=1l,a3=1+1=2,a4,=2+1=3,a5=3+2=15,a5 =28, a; = 13, a3 = 21, ag = 34, a;g = 55

12, ay =2,a0=—l,a3=—13,a,= (:%) =1a= (E%i) =—liag=—2,a7=2,a3=—1,a9=—3,a90=1
13. ay = (=)™ n=1,2, ... 14. a, = (=", n=1,2, ...

15. ap = (—D™n2n=1,2,... 16. a, = “U n=1,2, ...

17. ay = 250 = 1,2, ... 18, ay = 2= n=1,2,...

19. a,=n>—1,n=1,2,... 20. a,=n—4,n=1,2, ...

21. a,=4n—-3,n=1,2,... 22, ap,=4n—-2,n=1,2,...

23. 2, =02 n=1,2,.. 24, a,= " n=1,2,...
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570  Chapter 10 Infinite Sequences and Series

1
2

25. a, = LHCU g 26 ay = "2 CVGL g,

27. n1i>mOO 24 (0.1)" =2 = converges (Theorem 5, #4)

28. lim "D — gim 14+ S =1 = converges
n — oo n n — oo n

29. fim =2 — fim &=2— lim =2 =_1 = converges
"n>o00 l+20 T noce ()42 noo0 20 g
2v/m + (L
30.  lim 20— = lim \/—7(‘5) = —oo = diverges

i {255 =l S0

1—5nt

31. nleoo TR :nleoo e —5 = converges
: n+3 n+3 ; 1 _
32. im0 55 = oMy Giamey — oM, 5y =0 = converges
33. lim M=l fjy @=DO=D — iy (n— 1) = 0o = diverges
n— oo n—1 n— oo n—1 n— oo
. 1—nd . (%)*H .
34 lim =% = lim 3 =00 = diverges

n—oo 70—4n? n — 0o (E),4

35. lim_ (1 + (—1)") does not exist = diverges 36. lim_ (—=1)" (1 — ) does not exist = diverges

n— oo

37. lim (=) (1-1) = lim_(3+4)(1—1) =4 = converges

n — oo

38. lim (2—5)(3+4) =6 = converges 39. lim (2n1)"+] =0 = converges
40. nli)mOO (— %)n = nli)mOC (;)n =0 = converges

41, lim \/anl: Vo im o 22 =/ lim <1J2r%) = /2 = converges

42. lim G = lim ()" =00 = diverges

SE
ol

=1 = converges
n— oo n— oo

43, lim sin(g—i—%):sin( lim ( —i—%)):sin

44. nli)mOO n7m cos (nw) = nli’mOO (nm)(—1)" does not exist = diverges

45. lim_ $M0 — ( because — + < 810 < 1 — converges by the Sandwich Theorem for sequences
n— oo n n n n

46. lim “g—“ = 0 because 0 < “”‘ & < & = converges by the Sandwich Theorem for sequences

n — oo - 2“
. ]_ . A f
47. nleoo = nleOO 513 = 0 = converges (using I'Hopital's rule)
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Section 10.1 Sequences

Jim %= lim S = lim %ﬂ”z = lim_ M =00 = diverges (using 'HOpital's rule)
2
L et _ (1) _ o 20 (&) _
nleoo — _n]l>moo ( YI) _nhmw e _nleoc 1+(1) =0 = converges
2\/n n
. ! . (
o lim i = o i (z‘z‘_n) =1 = converges
nlew 8" =1 = converges (Theorem 5, #3)
Jim (0.03)"" =1 = converges (Theorem 5, #3)
Jlim (1+2)"=e" = converges (Theorem 5, #5)
im (1-1)"= im [1 + %] sl converges (Theorem 5, #5)
nlem v/ 10n = nlem 10/ plh=1.1=1 = converges (Theorem 5, #3 and #2)
. Wy 1 W2 12
n1l>moo Vn? = nll)mOC (\/ﬁ) =1 =1 = converges (Theorem 5, #2)
im 1/n
Jlim (%)1/ e ﬁz@’z—il =1=1 = converges (Theorem 5, #3 and #2)
nlem (n+ 4)1/<“+4) = Xgmw xX/x=1 = converges; (let X = n + 4, then use Theorem 5, #2)
lim o — i, h}: = 2 =00 = diverges (Theorem 5, #2)
n— o0 n n]lg)lc n 1
Jim [Inn—Inm+ D] = lim_In(347) =In (nleOC nj‘r—l) =In1=0 = converges
Llim N Jlim 4 V/n=4-1=4 = converges (Theorem 5, #2)
1 /22n+1 —  1q 24+(1/n) — 13 2.2l/n _ .1 _
nlem v/ 32+l = nleoc 3 = nlem 3.3/"=9-.1=9 = converges (Theorem 5, #3)
lim ™ = lim M < lim (1) =0and® 0 = lim ™ =0 = converges
n-—oo0 n n-— 0o n-n-n---n-n n— oo \n n n—oo n
n1i>mOO % =0 = converges (Theorem 5, #6)
nlem lgé“ = nlem @ = oo = diverges (Theorem 5, #6)
im o= lim (%) =00 = diverges (Theorem 5, #6)
Jim (1) = lim_exp (L5 10 (1)) = lim exp (B151) = et = converges
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572 Chapter 10 Infinite Sequences and Series

68. nlem In (1 + %)n =1In (nlem (1 + %)n) =Ine =1 = converges (Theorem 5, #5)

: 3n+1\D _ g 3n+1 T InB3n+1)—In(3n—1)
69. n1l>moo (3n71) _n1l>moo €xp (nln(3n71)) _n1l>moo exp( % )

3 3

- 1 Bel -1 | _ 1 6n’ _ 6) _ o2/3
= lim exp( (_%> ) =, lim exp((3n+l)(3n_l)> 7exp(9) =e”° = converges

n

11
70.  lim (nil) = lim_ exp (n ln(nil)) = lim_ exp (%) = lim_exp (“( “*j)

1

. 2
= lim_ exp (— ﬁ) =e~" = converges

1. nli)moo (2nx4nr1)l/n = nleoo X(2n1+1)1/n = anl)moc €Xp (% 1n(2n1+1)) = anlmoo €xp (W)
0

T “2 ) el —
=x lim_ exp (577) = xe” = x,x >0 = converges

72. lim (1 - L)'= Jimexp (nn (1 - 1;)) = lim  exp (%) = lim  exp l%]

— 1 —2n \ _ .0 _
= lim_exp (z2) =e’ =1 = converges

: -6" : 36"
73. rllgmOO Soa] = nlgmOO = =0 = converges (Theorem 5, #6)
74. lim SN G lim ()" (1) = lim ()" =0 = converges
"= ()" ()" T n=oe (1) () (R ()" T n=oo (1) 41
(Theorem 5, #4)
. _ . el —e . e2n_1 _ . 2e _ . _
75. nleoo tanh n = nleOO T = nleoc & = nlew Sem nlew 1 =1 = converges
. . . elnn _ g—Inn . n— (l) .
76. lim_ sinh(Inn) = lim *=*— = lim 2. =00 = diverges
n— oo n— oo 2 n— 0o 2

. n’sin(}) .. sin (3) . = (cos (1)) (,%2) L —cos (1) 4
Tl Tt =l Y Talfe Tra )T ol il T T comvenees
_ 1 sin (1 ES
78. lim n (1 — cos l) = lim w = lim M = lim sin(l) =0 = converges
n — 0o n n— 0o (L) n — 0o (%) n=— oo n

sin( 2 cos () (——L~
79. lim \/ﬁsin(i) = lim M = lim w = lim _ cos (i) = cos0 = 1 = converges

n n—oo o n — 0o 537 n

3"n3+5"n5

80. lim (3" + sml/n — Llimexp {ln(Sn + 5“)1/"] = lim_exp [%} = lim_exp [‘"f"]

. % In3+1In5 . N"n3+1n5
= lim exp{%} = lim_ exp[%} =exp(ln5) =35

81. lim_ tan"'n=7Z = converges 82. lim ‘-tan"'n=0-2 =0 = converges
n— oo 2 n— oo \/H 2
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Section 10.1 Sequences 573

lim (%)n + \/12—n = lim ((%)n + (%) ) =0 = converges (Theorem 5, #4)

. 0/ 9 T In(m’+n)| _ . 2n+1) _ .0 _
Jim /n? 4= lim _ exp [—n = lim_exp(2%5)=e"=1 = converges

X 200 . 199 X i 198 . |
lim W0 — iy 2000w gy 20099 = gy 2000 — 0 = converges
n — oo n n— oo n n — oo n n—oo n
(5<lnn)‘) ,
. 5 . . . 3 .
lim 0 — iy - = lim_ 100" _ pjy 80w o — fijm 340 — 0 = converges
n— oo \/E n— oo (\l[) n — oo \/H n— oo \/H n— oo \/H
2y/n
. . \/n2 — . .
lim (n —4/n% — n) = lim (nf nZ — n) (w) = lim —2— = lim ——
n— oo n— oo n++v/n2—n n—00 n++yn2-n n—0oo j4.,/1-1
n

=1 = converges

lim —— = lim ( 1 ) (V“LHV“”“) — lim Y@-l+vrn’+n
n—00 y/n2—1-+/n2+n n—o00 \vn2—1-+vn2+n VnZ—1++n2+n n — oo —l-n

5 I— 54yl )

= nl’moo W = — = converges

: 1M1 : 1 . 1

lim = | 2dx= lim 2= lim = =0 = converges (Theorem 5, #1)
n—oo n 1 X n—oo n n—oo n

. "1 . 1o " : 1 (1 1
Hli>m00 L X dx = nll’moc |:q F:| ] = nlem q (F — 1) = lﬁ lfp >1= converges

Since a, converges = lim a, =L = lim a,,; = nlemlizan =L= 11—2L 2L(I+L)=72=L2+L-72=0

=L=—-—9o0orL =8;sincea, >0forn 1=L=238

Since a, converges = lim a, =L = lim a,,| = nlemi:ig =L= Iﬁ—ig =LL+2)=L+6=L>+L-6=0

=L=-30orL =2;sincea, >0forn 2=L=2

Since a, converges :>nli)mooan :L:>nli>mooan+1 = lim /8423, =L=+/8+4+2L=1L>-2L-8=0=L=-2

n— oo

orL =4;sincea, >0forn 3=L=4

Since a, COnvergeSi>n1mean :L:>n1i>mooan+l :n&moo 8+2a, =L = w/8+2L:>L272L*8:0$L: -2
orL =4;sincea, >0forn 2=L=4

Since a, converges = nll)mooan =L= nli}mooanﬂ = nli)moow/San =L=+5L=1?-5L=0=1L=0o0rL = 5;since
a, >0forn 1=L=5

Since a, converges = nll)mooan =L= nli}mooanﬂ = nli)moo(IZ — ‘/an) =L= (12 — \/E) =12-25L+144=0
=L=9orL =16;since 12 — ,/a, < 12forn 1=L=9

_ l _ . . _ . _ . 1 _ ]
=2+ 2N 1, a; = 2. Since a, converges = nlgnocarl =L= nlgnooanﬂ = nleoo(Z—i- a_n) =L=2+¢

=L12-2L—1=0=L=14+/2;since a, >0forn 1=L=1++/2
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574  Chapter 10 Infinite Sequences and Series

98. a1 =+/1+a,n 1l,a = \/I Since a, converges énlgmman =L= nleman+1 = nlew\/l +a,=L=
=12-L-1=0=L=

1+L

li2\/§;since a, >0forn 1=L= #

99. 1,1,2,4,8,16,32,... =1,2°,21,22,23 24 25 .| = x;=1landx,=2"2forn 2

100. (a) 12 —2(1)? = —1, 3% —2(2)? = 1; let f(a,b) = (a + 2b)> — 2(a + b)? = a® + 4ab + 4b% — 2a%> — 4ab — 2b°
=2b%—a%a? —2b> = -1 = f(a,b) =2b%> —a? = 1;a®> —2b> =1 = f(a,b) =2b%> —a% = —1

. 2
; 2 a2 . 2 1.2 faly _ 2h2 — (a2 —2p?
-2 = (d+2b) D altdab4db®-2a’ dab—2b? _ —(2-2b%) _ 41 _, r,=14/2+ (—yl)

(b)

a+b (a+b)? (a+b)? y2
In the first and second fractions, y, n. Let % represent the (n — 1)th fraction where % landb n-—1
for n a positive integer 3. Now the nth fraction is aatzbb anda+b 2b 2n—2 n =y, n. Thus,

nleoo L= \/E
101. f(x) = x? — 2; the sequence converges to 1.414213562 ~ \/E
f(x) = tan (x) — 1; the sequence converges to 0.7853981635 ~
f(x) = e*; the sequence 1,0, —1, —2, —3, —4,

(a)
(b)
(©)

=5, ... diverges

£(0-+Ax) — £(0)

. f(Ax) _ .
Iim - = 1 Ax

. 1\ _

nli>moo nf(ﬁ) a Ax — 0t Ax Ax — 0t
o im ntan~! (%) =f{'(0) = ﬁ =1, f(x) =tan"' x
Jim n(e'” —1) =f(0) = l=1fx)=e"—1

lim nln (14 2) =f(0) = %2(0) =2, f(x) = In(1 + 2x)

102. = f(0), where Ax = 1

(a) n
(b)
(©)
(d)
103.

(a) Ifa=2n+1,thenb = [%J = [4lidnil) [2n® +2n+ §| =20’ + 2n,c = [“272] = [2n? + 2n+ 3]

2
=2n2+2n+ landa? + b2 = 2n+ D)% + (202 + 2n)°> = 4n® + 4n + 1 + 4n* + 8n3 + 4n?
—dnt 480 +8n2+4n+1=(2n2+2n+1)" =2

15 !~ fim sinf= lim
1 a—o0 g

,_
|5

. 2
g hm 2n° + 2n

a=o0 [2]  a—oo WIIntl sinf =1

(b)

=1lor lim
a— o0

wol%s

[

104. o 2nr)

2n

&)

. n) __ . o . 2nm . . _ _ .

(@  lim_ (2nm)Y/ @) = Jim exp ( = lim_exp ( 5 ) = lim_exp (5:) =¢e"=1;
n! ~ () v/2nr, Stirlings approximation = v/n! ~ (2) (2nm)"/ ") ~ 2 for large values of n

(b) n /! n

105.

106.

40

15.76852702

S
14.71517765

50

19.48325423

18.39397206

60

23.19189561

22.07276647

: Inn __
(@ ,lim 52—

(b) Forall € > 0, there exists an N = e~"9/¢ such thatn > e"™9/¢ = Inn > —2¢ = Inn®>In ()

L -0/<e= lim_L=0
n—oo n

1
Jlim k= lim =0

= d1ce=

nc

:>n°>%

Let {a,} and {b,} be sequences both converging to L. Define {c,} by c,, = b, and ¢,,_, = a,, where
n=1,2,3,.... Forall ¢ > 0 there exists N; such that when n > Nj then |a, — L| < ¢ and there exists Ny
such that when n > Ny then |[b, — L| < e. If n > 1 4+ 2max{Ny, N>}, then |c, — L| < ¢, so {c,} converges to L.
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: In _ 1 1 _ 1) _ o0 —
Llim n/t = lim exp(nlnn) = lim exp(n) =e' =1

lim_ x'" = lim_exp (l In x) = e = 1, because x remains fixed while n gets large
n— oo n — oo n

Assume the hypotheses of the theorem and let € be a positive number. For all € there exists a N; such that
whenn > Nj then |a, —L| <e = —e<a,—L<e = L—e€< a,,and there exists a Ny such that when
n>Nythen|c, —L|<e = —e<c,—L<e = ¢, <L+e Ifn>max{Ny,Ny}, then
L-e<a<b,<cy<L+e=|b—L|<e = nleOObn:L.

575

Let e > 0. We have f continuous at L = there exists 6 so that |[x — L| < § = |f(x) — f(L)| < e. Also, a, — L = there

exists N so that forn > N |a, — L| < 4. Thus forn > N, [f(a,) — f(L)| < e = f(a,) — f(L).

3+ D+1 _ 34l 3n+4 304l 2 2
Ay Ay = (;n+1))+1 > = > = 30 +3n+4n+4 > 30 +6n+4n+2

= 4 > 2; the steps are reversible so the sequence is nondecreasing; 3::11 <3 = 3n+1<3n+3

= 1 < 3; the steps are reversible so the sequence is bounded above by 3

o QoI @iH o @GN @D @S @)

1 ((+ D+ 1) m+1)! n+2)! m+1)! @n+3)! 7 @+ 1)
= (2n+ 5)(2n + 4) > n + 2; the steps are reversible so the sequence is nondecreasing; the sequence is not
(20+3)!

bounded since =(2n+3)2n + 2)---(n 4 2) can become as large as we please

(n+1)!

gy <a, = 2(::—3:;1 <L o 2“;3:“ < @tD = 2.3 <n+ 1 whichis true forn  5; the steps are

reversible so the sequence is decreasing after as, but it is not nondecreasing for all its terms; a; = 6, ap = 18,
a3 = 36,a4 = 54, a5 = 3% = 64.8 = the sequence is bounded from above by 64.8

2 1 2 1
an1 aniz—m—w 2_5_—:>

2

2 1 1
n(n+1)

P T

AN

= — o7 ; the steps are

reversible so the sequence is nondecreasing; 2 — % — % < 2 = the sequence is bounded from above

a,=1-— % converges because % — 0 by Example 1; also it is a nondecreasing sequence bounded above by 1

a, =n-— % diverges because n — oo and % — 0 by Example 1, so the sequence is unbounded

1

n

2"—1 __ 1
2n =1

a nondecreasing sequence bounded above by 1

a, = —%and0<%<%;since T

2"—1
3n

a, = = (2)" — & ; the sequence converges to 0 by Theorem 5, #4

ay = ((=D" + 1) (™) diverges because a, = 0 for n odd, while for n even a, = 2 (1 + %) converges to 2; it

diverges by definition of divergence

Xn = max {cos 1,cos 2,cos 3, ... ,cos n} and X,+; = max {cos 1,cos 2,cos 3,... ,cos(n+ 1)} x, withx, <1
so the sequence is nondecreasing and bounded above by 1 = the sequence converges.

a, apy & Hﬁ H\/—Vnzif;rl) = \/n+1+\/2n2+2n ﬁ+\/2n2+2n < \/n+1 \/ﬁ

and %ﬂ \/E; thus the sequence is nonincreasing and bounded below by \/5 = it converges

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
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ay A & M % & n’+2n+1 n’4+2n < 1 Oand ™' 1; thus the sequence is

nonincreasing and bounded below by 1 = it converges

B i () on a e 4+ () 4@ e () @7 e

4 4 (%)n 4; thus the sequence is nonincreasing and bounded below by 4 = it converges

ag=1l,aa=2-3,a3=22-3)-3=22-(22-1)-3,a,=2(22-(22-1)-3)-3=23 - (2 - 1)3,
a; =222 - (2>-1)3]-3=2-(2*-1)3,...,a,=2""1 - (2! - )3 =201 -3.27"1 43
=21(1-3)4+3=-2"4+3;a, an & —2"+3 20143 o o0 ol o 1<

so the sequence is nonincreasing but not bounded below and therefore diverges

Let0 <M < 1andletheanintegergreaterthan%. Thenn >N = n > I_L = n—-—nM>M

M
= n>M+oM = n>Mao+1) = S5 >M

Since M; is a least upper bound and My is an upper bound, M; < M,. Since M; is a least upper bound and M;
is an upper bound, My < M;. We conclude that M; = M so the least upper bound is unique.

L 3 13
22222222

but it clearly does not converge, by definition of convergence.

The sequence a, = 1 + # is the sequence . This sequence is bounded above by % ,

Let L be the limit of the convergent sequence {a,}. Then by definition of convergence, for § there
corresponds an N such that forallmandn,m >N = |a, —L| < fandn >N = |a, — L[ < §. Now
|am — ay| = |am —L+L —a,| < |ay —L| + |L —a,| < § + § = € whenever m > N and n > N.

Given an € > 0, by definition of convergence there corresponds an N such that for alln > N,

IL; —a,| < eand |Ly —a,| <e. Now|Ly —Lj| =|Ly —a,+a, — L] < |Ly —ay| + |ay — Li| < € + € = 2e.
Ly — Ly| < 2e says that the difference between two fixed values is smaller than any positive number 2e.

The only nonnegative number smaller than every positive number is 0, so |[L; — Lo| = 0 or L; = Lo.

Let k(n) and i(n) be two order-preserving functions whose domains are the set of positive integers and whose
ranges are a subset of the positive integers. Consider the two subsequences ay(,y and a;(,), where ay,) — Ly,
aitn) — Lo and Ly # L. Thus |agm) — ajm)| — [L1 — La| > 0. So there does not exist N such that for all m,n > N

= |a, — ay| < €. So by Exercise 128, the sequence {a, } is not convergent and hence diverges.

ax — L < givenan e > 0 there corresponds an Ny such that [2k > N; = |ay — L| < ¢]. Similarly,
axy — L & [2k—|— 1 >Ny, = |3.2k+1 - L| < 6] . Let N = max{N;,Ny}. Thenn >N = |an — L‘ < € whether
nis even or odd, and hence a, — L.

Assume a, — 0. This implies that given an € > 0 there corresponds an N such thatn > N = |a, — 0| < €

= |ay| <€ = ||| <€ = [lan]| — 0] <€ = |ayz| — 0. On the other hand, assume |a,| — 0. This implies that
given an € > 0 there corresponds an N such that forn > N, [|a,| — 0] < € = [|ay|| <€ = |an| <€

= |3, -0/ <e¢ = a — 0.

) . _ x2—a _o2x2—(x2-a) _ x2+a _
(a) f{x)=x*—a = '(X) =2X = Xy 1 = Xp — = X““_%_ET_

(b) x; =2,x9 = 1.75, x5 = 1.732142857, x4 = 1.73205081, x5 = 1.732050808; we are finding the positive

number where x? — 3 = 0; that is, where x> = 3, x > 0, or where x = /3.

(xn+ﬁ)
2
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134. x; =1,x9 = 1 4 cos(1) = 1.540302306, x3 = 1.540302306 + cos (1 4 cos (1)) = 1.570791601,
x4 = 1.570791601 + cos (1.570791601) = 1.570796327 = 7 to 9 decimal places. After a few steps, the

arc (x,_,) and line segment cos (x,_,) are nearly the same as the quarter circle.

135-146. Example CAS Commands:
Mathematica: (sequence functions may vary):
Clear([a, n]
a[n_J;=n''"
first25= Table[N[a[n]],{n, 1,25}]
Limit[a[n], n — 8]
Mathematica: (sequence functions may vary):
Clear|a, n]
aln_J;=n'/"
first25= Table[N[a[n]],{n, 1,25}]
Limit[a[n], n — 8]
The last command (Limit) will not always work in Mathematica. You could also explore the limit by enlarging your table
to more than the first 25 values.
If you know the limit (1 in the above example), to determine how far to go to have all further terms within 0.01 of the
limit, do the following.
Clear[minN, lim]
lim=1
Do[{diff=Abs[a[n] — lim], If[diff < .01, {minN= n, Abort[]}]}, {n, 2, 1000}]
minN
For sequences that are given recursively, the following code is suggested. The portion of the command a[n_]:=a[n] stores
the elements of the sequence and helps to streamline computation.
Clear|a, n]
a[l]=1;
a[n_]; = a[n]=a[n — 1] + (1/5)" P
first25= Table[N[a[n]], {n, 1, 25}]
The limit command does not work in this case, but the limit can be observed as 1.25.
Clear[minN, lim]
lim=1.25
Do[{diff=Abs[a[n] — lim], If[diff < .01, {minN= n, Abort[]}]}, {n, 2, 1000}]
minN

10.2 INFINITE SERIES

_al-m _20-()) i — 2 __
1. s, = -0 = 1= :>n1l>moosn—17(%)—3
2 (] _ 9 1,(4)") . (i) 1
2. — a(l-r) — (3) ( 100 1 — 100 —
A (L) aM S = oy T
_all=m) 1= (=9)" ; _ 12
3. sp= -0 = 1-(1) = nleoo Sp = o =3
4. sp = 11__(—(__22); , a geometric series where |[r| > 1 = divergence

1 1 1 (11 11 1 1Ly _ 1 1 . 1
S GTheTD T oyl aie :>Sﬂ—(§*§)+(§*1)+'“+(n+l*n+2)_§7n+2 = lim sy =3
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10.

11.

12.

13.

14.

15.

16.

17.

18.

21.

23.

24.

Chapter 10 Infinite Sequences and Series
5 5 5 _ 5 5 5 5 5 5 5 5 5\ 5

=y T 2 m=00-3)+G-D+E-D+ AN TG ) =5
= lim s, =5

n— oo
1-14L_ Ly the sum of this geometric series is 1 =1 14

1716 ed T g I-(=9 1+ 53
L4 L4 L4 the sum of this geometric series is ) — 1
16 T 64 T 756 g ()~ 12
T4 L4 14 the sum of this geometric series is @ _ 7
2776 T ea T g — ()~ 3
5-24 % — 65—4 + ... , the sum of this geometric series is ;— f_ 5= 4

, s the sum of two geometric series; the sum is

~~
[}
+
—_
N
+
—~
ol
W=
SN—
+
—~
SN
+
[[———-
SN—"
+
—~
ooln
+
NS
SN—
+

G-D+EB-H+E-32)+(3—-35)+....is the difference of two geometric series; the sum is

5 1 3_ 17
OB R A
a+1D+ (% %) + (% + %) + (% — %) + is the sum of two geometric series; the sum is
1 1 _ 5_ 17
(OO R )
2+%+%+11765+... :2(1—|—%—i—%—i—%—i—...);thesumofthisgeometricseriesisZ(1_1(;)) = 13—0
5
. . . . 2 2 _ 5
Series is geometric withr = £ = ‘5 =3
Series is geometric withr = =3 = ’—3‘ > 1 = Diverges
. L 1 |
Series is geometric withr = 8 ‘ ‘ < 1 = Converges to ;= T1=7
Series is geometric withr = —5 = ‘——‘ < 1 = Converges to = —%

093 =S~ 23 (Lyn_ (%) _ = R ¢ ) 234
Z_ZT(_Z) = (L] = ® 20. 0.234 =3 {55 (1) = =7y = 5w
P T () = 1~ (o)

07 =3 (&)= (o) - 2. 0d=3% & (L) = () _a
- 10\10) — 7_(Ly 9 : - 10\10) — _(L) 9
= (i5) = )
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25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
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_ 124 123 124 123 123,999 _ 41,333
=10 T 10 o0 T

—10° — 99900 — 99,900 _ 33,300

__ 124 123 1\ _ 124
1.24123 = 100+2% B (k) =&+

(o e}
ey erre i 142,857 ( 1 \M _ < 106 ) _ 142,857 __ 3,142,854 __ 116,402
3142857 =3 + ZO =20 (75) =3+ =3+ -1 = 5090 = 37.057
b

. n _ . 1 _ .
nlg& =0 = 1111:10101 =1 # 0 = diverges
im o n+D g w4n iy 20+l — fim 2 =
lim ooy = im oiste = lim o5 = lim 3 =1 # 0 = diverges
lim = 0 = test inconclusive
n—oo N4
. n . . L _ . .
HILIEO i3 = nhl?o 5. = 0 = test inconclusive
lim cos ~ = cos0 = 1# 0= diverges
n—oo
. en . o . e . 1 _ .
nlggO s = r1113)1o T = nlgg - = nlglolo =1 # 0 = diverges
lim ln ~ = —oo # 0 = diverges
n—oo

lim cosnm = does not exist = diverges

n—oo

s= (=D G=D+G-D ot (=D () =1 -y = lim s
1

= lim (1 — ) = 1, series converges to 1

3 3 3 3 3 3 3 3 3 3 3 :
s=(7-3)+GE-3)+ §—ﬁ)+~~-+(W—P)+(k—z—m):3—m:> lim s

k — o0

Sk = (1n\/§ — ln\/I) + (ln 3 - ln\/E> + (ln\/é_l— ln\/g) +. (lnf Inv/k — ) + (ln\/k—|— 1 - ln\/l;)
=Inyvk+1- ln\/T =hvk+1= klim Sk = klim In\/k + 1 = oo; series diverges
— 0 — 00

38. sy = (tan1 —tan0) + (tan2 —tan 1) + (tan3 — tan2) + ... + (tank — tan (k — 1)) + (tan (k + 1) — tank)
=tan(k+ 1) —tan0O=tan(k + 1) = klim sk = klim tan (k + 1) = does not exist; series diverges
— 00 — OO
39. s = (cos™'(3) —cos™! (1)) + (cos™'(3) —cos™' (1)) + (cos™! (1)

40.

—cos'(1)) + ...
+ (cos™1(1) fcos’l(ﬁ)) + (cos’l(ﬁ) — cos’l(ﬁ)) =1 —cos l(ﬁ)

; — 1 To_ -1(_1 _ T _ T _ T ; ™
= klimoo Sy = klgnOC {3 cos (k+2)] =3 — 7 = ¢, series converges to ¢

sk:(\/—\/i)+(\/8—ﬁ)+(\f—\/5)+...+(\/F—\/k+—2)+<\/M—M)

k+4 -2= klim Sk :klim [\/k+4 —2} = 00; series diverges
— OO — OO
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580  Chapter 10 Infinite Sequences and Series

4 _ 1 1 _ 1 11 1 1 1 1
41. @n—3)@n+1) — 4n—3 4n+1 = Sk*(1_§)+(§_§)+(§_ﬁ)+" +(4k—7_4k—3)
1 1 _ 1 : T 1 _
s —mr) = @ = Jm s = lim (1—557) =1
6 _ A B _ ACn+1)+B@n—1) _ _
42. (2n—1>(2n+1)*2n—1+2n+1 = oD A2n+1)+B@2n—1)=6= 2A+2Bn+(A—-—B)=6
2A+2B =0 A+B=0 K 6 LS 1 1
_ 11,1 1,1 1 1 1 1 _ 1 :
= (T*§+§*§+§*7+'“ 72(k—1)+1+2k—172k+1) =3 (1= 557) = thesumis
: 1 _
kli,moo3(l_2k+1)_3
40 A B C D  _ A@n—1)(@2n+1)? + B@n+1)? + C(2n+1)2n—1)* + D@2n—1)*
43. (2n—1)2(;n+l)2 = nteo Teaont ooy = 2n—1)?2n+1)?

= A2n— 1)2n+ 1Y+ B@n+ 12 + C2n + 1)2n — 1)> + D2n — 1)2 = 40n
= A@Bn®+4n> —2n—1)+B(4n® +4n+1)+C(8n® —4n> —2n+ 1) =D (4n> —4n + 1) = 40n
— (8A + 8C)n® + (4A + 4B — 4C + 4D)n2 + (—2A + 4B — 2C — 4D)n + (—A + B + C + D) = 40n

8A+8C= 0 BA+8C= 0
A e e e A s (B
-A+ B+ C+ D=0 -A+ B+C+ D=0
andD = -5 = {—A—i—S—fC—i——CS::OO = C=0and A=0. Hence,nZ::1 [%}
=5Z[ﬁ_m}:5(%_l+%_%+%_'“ _<2(k711)+1)2+(2k£1>2_<2k~1*1>2)

_ 1 i T 1 _
=5 (1 — (2k+1)2) = the sumlsnleOO 5 (1 — (2k+1)2) =5

2n41 1 1 _ 1 1 1 1 1 1 1
44. n2(|r11+l)2_n727(n+l)2 = Sk_(171)+(17§)+(§7ﬁ)+'“+{(k—l)ziﬁj|+[ﬁi(k+l)2]

= lm oso= lm [1- g ln] =1

k — o0 k — o0

4. Sk:(1_%)+(%_%)+<%_ﬁ)+“'+< k1—1+ﬁ>+(ﬁ_ k1+1>:1_ e

= dim go= lim (1- o) =1
k — co k — oo k+1
_ (1 1 1 1 1 1 1 1 1 1 _ 1 1
46. s = (3 — gim) + (17 — 3is) + (515 — 37) + - + (gwen — 3ix) + (5ix — 370) =3 — aen
1
1

_ 1 1 1 1 1 1 1 1 1 1
47. sk = (m - m) + (m - m) + (R - m) +.+ (ln(k+1) - ﬂ) + (ln(k+2) - ln(k+1)>

_ _ 1 1 : — _ 1
= ln2+ln(k+2):>kli,moosk_ n2

48. s, = [tan~! (1) — tan~* (2)] + [tan! (2) — tan"' (3)] + ... + [tan"! (k — 1) — tan~! (k)]

+ [tan~' (k) —tan' (k+ )] =tan' () —tan" ' (k+ 1) = lim sy=tan ' ()-F=7—-F=—-7
k — o0
49. convergent geometric series with sum —+ =2 2+ \/5
ECANNE

()

50. divergent geometric series with |r| = ﬁ > 1 51. convergent geometric series with sum . ( ) =1
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52.

54.

55.

56.

57.

58.

59.

60.

61.

63.

64.

65.

66.

67.

68.

69.

70.

Section 10.2 Infinite Series

. _ n+l . . _ . _ n .
nleoo (=D)™'n #£0 = diverges 53. nleoo cos (nm) = nlgnOC (=)™ #0 = diverges
cos (nm) = (—1)" = convergent geometric series with sum —— = 2

gent g 1 (_ 1 ) 6
5
convergent geometric series with sum —2% N = %
() c

. 1 .
Jlim In 35 = —00 # 0 = diverges
convergent geometric series with sum —2—~ —2 =20 _ 18 _

gent g 1 ( T ) ) 9 — 9
10
convergent geometric series with sum —v = 2~
HORE
difference of two geometric series with sum ﬁ — ﬁ =3-2=3
-5 -3

. 1 n _ . -1 n _ -1 .
Jim o (1-3) = lim (143" =e ' #0 = diverges

. n! _ . . n" _ . n-n---n . _ .
2 IM g5 = 00 # 0 = diverges 62. lim &= lim §5-1> lim n=oo = diverges
Oozn+3n Oozn Oogn Ooln chn Ooln Oogn . .
Z:l = = 2:1 7+ 2:1 5= z:] (H"+ 2:1 (3)"; both = Z:I (1)" and Z:l (3)" are geometric series, and both converge
n= n= n= n= n= n= n=

to1—
IS0

[o0)
: 1 1 3 3 : 1\n
smcer—§:>‘§’<1andr—1:>‘— < 1, respectivley = Y (5) =

n=1

r= =3

NI

4

=1 andi(
n=1

1—

01|
ININ

23 = 14 3 = 4 by Theorem 8, part (1)

gk

=
I

. 0y gn ] . Dt . .
lim +0 = lim 5— = lim G)+1 1 =1+ 0= diverges by n" term test for divergence
n—oo o' 1 n—oo am + nooo (3) +1

[o¢]

fj In(25) =X [In(m)—In@+1)] = s =[n(1) —In@2)]+[In(2) —In3)] + [In(3) — In(4)] + ...
n=1

n=1

+[Ink—1)—In®]+[Ink) —Ink+ 1)]=—Ink+ 1) = klim sk = —oo, = diverges
— OO
Jima, = lim In(5%) =In(3) #0 = diverges

convergent geometric series with sum ﬁ =1

divergent geometric series with |r| = & ~ 2141 >

me ™ 22459
[o¢] [o0)
> (=xt =3 (=x)a= 1,1 = —x; converges to y—— = 1 for [x| < 1
n=0 n=0
ZO (=X = ZO (—x%)"; a = 1,r = —x?; converges to ;- for [x| < 1
n= n=|
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71. a:3,r:x_l;Convergestoﬁ:%for—l<%<10r—1<x<3

2 x—1

[ee] oo 1
=" n_ 1\ 11, ()
72. Y 5 Gras) =X 3 55 ,a—g,r—3+Sinx,convergestoli(271 )

n=| 3 +sinx

(=1

_ 34sinx _ 3+4sinx : 1 1 1
= 3@ rsin0 = §32smx forallx (since § < Ty =  forall x)

73. a=1,r = 2x; converges to ;= for [2x| < 1 or [x| < }

74. a:l,r:—é;convergestol E 1) :%forh—ﬂ <lor|x| > 1.
X2
75. a:l,r:—(x—l—l)“;convergestom:ﬁfoﬂx—f—l\ <lor-2<x<0

1

1 . 3-x. _ 2 3—x
76. a=1,r= ,convergest0717<3;x)——X71f0r|
2

2

3 |<10r1<x<5

77. a=1,r = sin x; converges to 7—— for x # (2k + 1) 7, k an integer

78. a=1,r = Inx; converges to ;—— for [Inx| < lore™! <x <e

7. @ ;2 M+ Hn+3) (b) ngo +2)(n+3) © n; (D)

50 (@ ;1 FDOF3) (b) HZ:3 ®—2m-1D © n;() CET e
; 11 ()

81. (a) oneexamplels%—i—%—i—g—i—ﬁ—l—...: - =1

. > n+1 . . . .
82. The series Y k(3)"  is a geometric series whose sum is

n=0 1- (%)

= k where k can be any positive or negative number.

83. Leta, =b, = (%)n Then }_ a, = > b,

n=1 n=1

I
8

(1) =1 while > (&) = 3 (1) diverges.

n=1 " n=1

=
Il

84. Leta, =by, = ()" Then> a, =3 by =3 (1)" =1, while 3" (aby) = 3. ()" =1 # AB.
n=1 n=1 n=1 n=1 n=1

NgE
NgE

)". ThenA =3 a,=1,B=

n=1 n

85. Leta, = (1) andb, = ( b= Tand 32 () =3 (3)" =1 #
n=1

o>

1
2

1 1

n

86. Yes: Y, (i) diverges. The reasoning: Y a, converges = a, — 0 = i — 00 = Y (al,.) diverges by the

nth-Term Test.
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Section 10.3 The Integral Test

87. Since the sum of a finite number of terms is finite, adding or subtracting a finite number of terms from a series
that diverges does not change the divergence of the series.

88. LetA, =a; +ay+... +apand lim A, = A. Assume > (an + by) converges to S. Let

Sp=(a+b)+@+b)+... +(@ +by) = Spy=(a+a+... +a,)+ (b +ba+... +by)
= by +by+... +b, =S, — A, = n&mw (by +b2+... +by) =S —A = > b, converges. This

contradicts the assumption that . b, diverges; therefore, > (a, + by, ) diverges.

89. ) 2=5=2=1-r=>r=23;242(3)+2(2)"+...
=

90. I+eb+e?®+...=r=9=l=1-¢ =e=3%=b=In(}

Ol sy=1+2r+2+208 + 4+ 20+ ... + ™ 422t n=0,1,...
= so=(1+rP+rt o 0+ e 20 $ 20 o 20 5 dim s, =
=M if | <lorr <1

2r
+ 1—r2

1—12

_ _ a_ a(l—r") _ar"
92. L Sn = 1 I-r = 1-r

93. area:22+(\/5)24-(1)24—(\%)24-... —4424 14 4. =4 —gm?

n—1

94. () Li=3,Ly=3(%),Ls=3(4)°, ..., L,=3(%)"" = Jim L, = lim 3(3)" =o0

(b) Using the fact that the area of an equilateral triangle of side length s is \ﬁsz we see that A} = L—
A2=A1+3(£)<3> 2 A=A +3(4) () (3) = N

= As 347 (¥ (%)iAs:A4+s<4>3(4)<%>2,...,
() ) = F o5 3va0 () = L rava (5 ).
Jimg A= tim, (4 +3V3(E 7)) = +3v3( ) = F +3v3l) = £+ )

k=2
-~ 4@ -t

A—f+z3 k=2

10.3 THE INTEGRAL TEST

b
_ 1
1. f(x) = 2 is positive, continuous, and decreasing for x  1; f = dx = b11m f 2 dx = blimoo [—;]1

= lim (—it+1)=1= fl % dx converges = Z L converges

b— o0 b

b b
2. f(x) = - is positive, continuous, and decreasing forx  1; f L dx = lim f L dx= lim [%XO'S]
X X b—oo VI b— oo

_ 1 51,08 _ 5\ _ | : (ST
_bhm (3b —Z)_oo;Sfl wdxdlvergesézwdlverges

— n=1
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o0 b b
o 1 . oL . . . 1 o . 1 o . 1 —1x
3. f(x) = 3 Is positive, continuous, and decreasing forx  1; fl e dx = l1m fl e dx = bh_r}nOO [2tan 2} ]

= 1 Lian=1b _ Liap—11) = @ _ Lign-11
,bll)moo (ztan 7 — ptan 2) = 7 — 3tan :>f X2+4 dx converges:>z converges

n2+4

o0 b b
_ 1 . 1 _ :
4 f(x) = 25 1,f1 pdx = tim [ ax= lim [njx+ 4]
= bli>moo (Inb+4| —1In5) = c0 = fl n+4 diverges
. .. . . > . b . 1 b
5. f(x) = e > is positive, continuous, and decreasing for x  1; f e >dx = lim e X dx = lim [75672X:|
1 b—oo VI b — oo 1
o0 o0
= bli)mOO (ffgh + 21?) = 21? = fl e 2* dx converges = Z:Ie’zn converges
n=
1 . .. . . . b 1 . 1 b
6. f(x) = i is positive, continuous, and decreasing for x  2; ) x(lnx) s dx = bll)mOO 2 "mn) dx = bll)mOO {fm]z

T S U DA =
= bll>moo ( ns T In2) =13 = j; (lnx) dx converges = Z )2 converges

7. f(x) = & is positive and continuous forx 1, f'(x) = ()?2;’;2)2 < 0 for x > 2, thus f is decreasing forx ~ 3;
0 b b 00
Jo e tim [( 2 ax= tim o [Ine +4)] = tim  (Sn(? +4) = $n(13)) = 0 = [ A dx

o0
" diverges = Z Lo =143+ Y ot diverges
n=3

n?+4

diverges = Z T
n=

8. f(x) = h”‘ is positive and continuous forx 2, f’(x) = ﬁ < 0 for x > e, thus f is decreasing for x ~ 3;
e b
[Tfax = tim [ 0¥ dx = lim [2(1n x)] = lim (2(Inb) —2(In3)) = 00 = [ 12 dx
30X b—oo Y3 X — 00 — 3 X

. I - X\ 02 & Innl
diverges = > Mdiverges = - = 04 4 S giverges

n=3 n=2 n=3
9. f(x)= e"—i is positive and continuous forx 1, f'(x) = 7"3(;73 8 < 0 for x > 6, thus f is decreasing for x 7
* X2 o o 32 18k 5410 g 32— 18b—54 , 327\ _
j; e“dx_blgnoo 76“ dx = bleOO [_ex—B_m—ex/}L_bILmoo (T_Fm)_
= lim (35018 4 327 _ jip (‘—5“)+ﬁ—ﬁ:>fxidxconver es = i“—zcon r
b eb/3 on b eb/3 &3 — &l 7 B g en/3 verges
— 00 — 00 n=7
:>Zen3— +;—,3+§+el4—63+£—§3+—?+2n300nverges
10. f(x) = x2i5x4+1 = (::14)2 is continuous for x 2, fis positive for x > 4, and f'(x) = . ; < 0forx > 7, thus fis
. b o1 b3 b 3
decreasing for x  8; f 2 dx = bleOO fg 17 dx j; TE dx| = fs o dx
b
= lim [ln 3 ] = lim (Injb—1 3 _In7-3 :oo:>f dxdlveres
b — 0o | x—l8 b—>oo( | |+b—] 7) g
= 4 = 4 1 1,2 ,3 4
n— : n— _ n— .
= Zs oy diverges = 2:2n2—2n+1 =-2-7+0+ g +55+3+ 2:8n2_2n+1 diverges
n= n= n=
11. converges; a geometric series withr = L < 1 12. converges; a geometric series withr = L < 1
g g 10 g g S

13. diverges; by the nth-Term Test for Divergence, lim - T =1#0
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14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Section 10.3 The Integral Test

diverges by the Integral Test; fl ;dx=5In(n+1)-5mn2 = f S1dx — o0

[o0) (o 0]

. . 3 1 . . . . 1
diverges; nz::l 7= 3 T which is a divergent p-series (p = 35)

n=

o0

converges; »

n=1

-2

[\C]19%)
~

oo
= -2 -5, which is a convergent p-series (p =

n=1

5

converges; a geometric series withr = % <1

diverges; > =2 = -8 1 andsince Z diverges, —8 Z diverges

n=1 n=1

diverges by the Integral Test: L“me dx =3 (In?n—1n2) = fle“T" dx — o0
‘ t=Inx
diverges by the Integral Test: f2 I“Ti dx; | di=2 | — j: . te/? dt =  lim [2te!/2
dx = et dt o

= lim [2e"%(b—2)—2eM™?/2(In2 - 2)] = 00
b— o0

converges; a geometric series withr = % <1

: T s S'Ins _ In5) (5\" _
diverges; lim —z5 = lim gy = lim () 3) =o0#0

[o0) [o0]

diverges; Y n;—zl =23 - +1 , which diverges by the Integral Test
n=0 n=0
& —=1ln@n—1) — ccasn — oo
diverges; lim a, = lim 2 — lim 2 _ #0
‘noo M p—oo ntl n = 00 1

u—f—i—l

Vit
oz o — [T o (a1

diverges by the Integral Test: fl ' W ; [

1
diverges; lim %E = nleoo (E‘{S) = nleoc 4 =00#0

diverges; a geometric series withr = 5 ~ 1.44 > 1

converges; a geometric series withr = ﬁ ~ 091 <1

O u=Inx )
converges by the Integral Test: j; PO dx; qu—lax| — j; T du

- 4et/2] ;)n2

—In2 - oc0asn — o

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
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32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

= Mim [sec™! |ul]}, = G lim [sec™!b—sec™' (In3)] = lim [cos™* (1) — sec™! (In 3)]
b— o0

= cos By (0) —sec™! (In 3) T _sec”!(In3)~ 1.1439

00 1 = 1 0
converges by the Integral Test: fl Tnz,)dx:f1 () dx; [u o ] — j; i du

1+ (In x)2 du = % dx
. _ b . — — us s
:blgnOC [tan~tu], = leOO (tan'b—tan'0) =5 - 0=1
in (1 A
diverges by the nth-Term Test for divergence; lim _nsin (;) = lim S"(ll()“) = lim S =10
— o X — X
2 (1
. . o N e (FE) ()
diverges by the nth-Term Test for divergence; lim n tan (L) = lim ) Jlim (7 %)

:nli)mOO sec? (%) =sec’0=1+#0

. u=c¢e" < o 1. 1b
converges by the Integral Test: fl : +e2x dx; [ du= e dx — fe e du= lim [tan"'u],
= lim (tan"'b—tan"'e) =7 —tan"'e~ 0.35

b— o0
u=c¢et . N
converges by the Integral Test: fl e dx; | du=e*dx —>j; u(l+u) du—j; (2 - u-ZH) du
dx = ldu_

— T b_ b — —
= Jim 2 ;45 = Jim 2In(525) —2In(55) =2In1—-2In(;%5) = —2In (55) =~ 0.63

T4x2

= tan"! 2 2 2
converges by the Integral Test: fl Blan ' x gy; [L(lju dx x] f 8u du = [4u? ]_/4 =4 <"T — ”—) =3

Ju=x241 1 [T : 1 b . 1
diverges by the Integral Test: f] 2 dx; [du ok dx 3 L q= ILmOO [5Inu], = blimoc 3(nb—1In2)= oo
b eX X b
converges by the Integral Test: fl sechxdx =2 lgnOO L TE @ dx =2 p T hm [tan~!e¥]]

b

=2 lim (tan"!e® —tanle) =7 —2tan"le~ 0.71
b — oo

0 b

converges by the Integral Test: f sech’x dx = lim f sech?x dx = lim [tanh x]lf = lim (tanh b — tanh 1)
1 b— oo V! b — oo b — oo

=1—tanh 1~ 0.76

* . b . b4 2) a
f] (5 — ) dx :blimOO [aln |x +2| —In |x + 4/] zbll{nOC In (btéf —In(3);

lim ©2' — o fim (b42)p ! =] %27 U 2 the series converges to In (3) if a = 1 and diverges to oo if
b— b+4 b— o0 1, a=1

a > 1. Ifa < 1, the terms of the series eventually become negative and the Integral Test does not apply. From
that point on, however, the series behaves like a negative multiple of the harmonic series, and so it diverges.

0 b
1 2a _ T x—1 _ 1 b—1 2\. 1 b—1
j; (527 — 52) dx _bleOO {ln GrD= L _bleOO In @ —In (&) ’bli>moo b=
li 1 l,a—% h i In (2 In2if L and di if
= b Lmoo Sal+ &1 — 00,8 < % = the series converges to In (5) =Inzira= 3 an 1verges tooo1
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43.

44.

45.

46.

47.

Section 10.3 The Integral Test

ifa< % . Ifa> % , the terms of the series eventually become negative and the Integral Test does not apply.

From that point on, however, the series behaves like a negative multiple of the harmonic series, and so it diverges.

(a)

n+1 n
LIRS TR R | IS RS Lo
1 x 2 n 2 n 2

(b) There are (13)(365)(24)(60)(60) (109) seconds in 13 billion years; by part (a) s, < 1 4+ In n where
n = (13)(365)(24)(60)(60) (10?) = s, < 1 + In ((13)(365)(24)(60)(60) (10°))
=14+1In(13) + In(365) +In(24) + 2 In (60) + 9 In (10) ~ 41.55

00 o0 o0
1 _ 1 1 1 g
No, because 21 —=:> rand El < diverges
n= n=

o0 o0 [e o)
Yes. If ) a, is a divergent series of positive numbers, then (3) > a, =Y (%) also diverges and % < a,.

n=1 n=1 n=1

oo
There is no “smallest" divergent series of positive numbers: for any divergent series ) . a, of positive numbers

n=1

> (%“) has smaller terms and still diverges.

n=

o0 oo oo
No, if }_ a, is a convergent series of positive numbers, then 2 >~ a, = > 2a, also converges, and 2a,,  a,.

n=1 n=1 n=1

There is no “largest" convergent series of positive numbers.

(a) Both integrals can represent the area under the curve f(x) = ﬁ, and the sum ssy can be considered an

50
1

approximation of either integral using rectangles with Ax = 1. The sum s5o = > JatT is an overestimate of the

n=1

x+1

51
integral fl \/1—

587

dx. The sum ssp represents a left-hand sum (that is, the we are choosing the left-hand endpoint of

each subinterval for c;) and because f is a decreasing function, the value of f is a maximum at the left-hand endpoint of

50

51
. . 1 1 P
each sub interval. The area of each rectangle overestimates the true area, thus fl orst dx < n§=1 WSk In a similar

1

50
manner, Sso underestimates the integral fo \/mdx. In this case, the sum ssg represents a right-hand sum and because

f is a decreasing function, the value of f is aminimum at the right-hand endpoint of each subinterval. The area of each

50

50 51
rectangle underestimates the true area, thus L_ < L_dx. Evaluating the integrals we find dx
g nz=:1 vn+1 \]:) vVx+1 g g j\l vVx+1
o 51 . N 50 1 . 50 . -
- [2 x+1]l ~2/52-2y2~ 11.6and | dx = [2 x+1]0 —2/51 — 2¢/1 ~ 12.3. Thus,
50
1

11.6 < nX::l T < 12.3.
b 1000 = [ —A_dx =2 1" — 2y /n 1 —2v/2 > 1000 500 +2¢/2) = ~ 2514142
(b) sy > =/, \/H—lx_[ x—l—]1 = n+1-— > :>n>( + )—~ .

=n 251415.
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588

48.

49.

50.

51.

52.

53.

54.

Chapter 10 Infinite Sequences and Series
30 o0 0
(a) Since we are using s3p = Y, # to estimate n—14, the error is given by > # We can consider this sum as an estimate
n=1 n=1 n=31

of the area under the curve f(x) = x_14 when x 30 using rectangles with Ax = 1 and ¢; is the right-hand endpoint of

each subinterval. Since f is a decreasing function, the value of f is a minimum at the right-hand endpoint of each

0 00 b b
: 1 _ 1 I H ~ -5
subinterval, thus 1 < Ldx = hm “ 4dx = lim { 3"3}30 = lim ( 3b3 + 3(30) ) ~ 123 x 107°.

vy
n=31 o X b—o0v 3 b—00 b—00

Thus the error < 1.23 x 1072.

0 [ b b
(b) We want'$ — s, < 0.000001 = [~ %dx < 0000001 = [ Ldx= lim [ hax = lim [~3k]

b—ooY

= lim (—35 + 5) = 37 < 0.000001 = n > /19990 ~ 69.336 = n  70.

b—oo

00 00 b b
WewantS — s, < 001 = [ " ddx <001 = [“ddx = lim [ bdx= lim [—55] = lim (~g + 5)

3
X b—oo

8
=55 <001=n>/50~7071=n 8=S~ss=) & ~1.195
n=1

b

1 1 1e,0—1
dx < 0.1 = 113)10 x2+4dx = blirgo [Etan (

).

WewantS—sn<0.1:>fn

[SSTESd

2+4

= Jlim (jtan™! (3) — tan"!(2)) = 7 — tan"'(§) < 0.1 = n>2tan(5 —0.2) ~9.867=n 10=S ~ sy

10
=Y 75~ 057
n=1

b
hdx <000001 = [ dhrax = lim [ chdx = gim [—30] = tim (=3 + 19)

]l
b—ooVn X b—oo

S —s, < 0.00001 = f
= 2% < 0.00001 = n > 1000000'® = n > 10%°

T

b b
dx<001éf Gipdx = gim [T olodx = lim {f ! }

boooYn x(lnx) 2(Inx)" |,

S—sn<001;»f

. _ V5
— lim ( i + e ) =l <001 =0 > eV 1177405 50 1178

b—oo

n n
LetA, =) acand B, =) 2ka(2k) , where {ay} is a nonincreasing sequence of positive terms converging to
k=1 k=1

0. Note that {A,} and {B,} are nondecreasing sequences of positive terms. Now,
B, = 2ay +4ay + 8ag + ... 4+ 2"apn = 2ay + (2a4 + 2a4) + (2ag + 2ag + 2ag + 2ag) +
+ (2am +2agm) + ... +2am)) < 2ay + 2a, + (2a3 + 2a4) + (2a5 + 2a6 + 2a7 + 2ag) +

271 terms
+ (2am1) + 2800141y + ... 4 2am)) = 2An) <2 a. Therefore if ) a converges,
k=1
then {B,} is bounded above = > 2*an, converges. Conversely,

Ap=a; + (ag+ag)+ (g +as +ag+ar) +... +a, <ay+2a+4ay+... +2"%py =a; +By<a;+ ) 2ka<2k).
k=1

Therefore, if > 2k3(2k> converges, then {A,} is bounded above and hence converges.
k=1

o0 oo
_ 1 _ 1 n _ 1 1 b
(@) agny = 5, T = Ty = Zz 2" = Z 2% s n(ln 5 = W3 22 ~, which diverges
n= —

[o 0]
1 .
= Z:z i diverges.
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55.

56.

57.

58.

59.

60.

Section 10.3 The Integral Test

(b) apm = % = Z:l 2o = ; on. % = ; (zn;ﬂ - Z:l (2}%1)“, a geometric series that

converges if % < lorp>1,butdivergesifp < 1.

oo _dx u=Inx R o . —p+1 P o . 1 _ _
(a) fz Xn xp [du _ %] — flnzu P du = bleOo [EPH} = blgnOO (H) [b=PH! — (In 2)7PF1]
~—7(In2)"", p>1 : . . . .
= { p-1 (In2) P = the improper integral converges if p > 1 and diverges if p < 1.
oo, p<1
Forp = 1: [T [In (In x)]'; = lim [In(Inb) — In(In 2)] = oo, so the improper integral diverges if
2 xlInx b — 0o b — oo

p=1.

(b) Since the series and the integral converge or diverge together, > converges if and only if p > 1.
n=2

n(ln n)P

(a) p=1 = the series diverges
(b) p=1.01 = the series converges

o0 o0
© 3 m =iy m ;p=1 = the series diverges
n=2 n=2

(d) p=3 = the series converges

n+1
(a) From Fig. 10.11(21)inthetextwithf(x):%andak:%,wehavef1 %dxﬁl—l—%—i—%—l—... —l—%
<1+ [f0dx = W@+ D<I+i4i+. +1<I+hn=0<lh@+D)-ln

589

< (1—1—%4—%—}—... +%) —Inn< 1. Thereforethesequence{(1—1—%—{—%—1—... —1—%) —lnn} is bounded above by

1 and below by 0.
n+1
(b) FromthegraphinFig. 10.11(b) with f(x) = 1, —=5 <f+ ldx=In(n+1)—1Inn
— —M@+)—Inn]=(14+3+5+...+ 5 -In+1) - (1+3+5+... +:—Inn).

If we definea, = 1 + % = % + % —Inn,then0 > a,,; —a, = ay4 < a, = {a,} is a decreasing sequence of

= 0>

nonnegative terms.

—x? - X Ay — T —x1b _ s -b —1 -
e ® <e*forx 1,andf1 e dx—blgnOC [—e 7]} —bllmOo ( +e ) =e! = f dxconvergesby
the Comparison Test for improper integrals = e =1+ > e converges by the Integral Test.
n=0
S 1 : -3 : «2]° : 1 1 1
@ s0= 3 3 = 197531986; Jo = tim [P dx= tim <] = lim (<5 + 5h) = 555 and
! 1 b3 1" _ 1 1y _ 1
fm;dx— lim flxgdx— lim [_7}1o_b1i>m( 27+ 355) = 305
1.97531986 + 242 <'s < 197531986 + 200 = 1.20166 < s < 1.20253
(b) s = Z % ~ 120166451.20253 — 1202095’ error S 1.20253;1.20166 = 0.000435
S 1 . - : x3]° . 1 1 1
(@) s0= 3 = 1.082036383; Jodrax=tim fixtax= tim [<5] = lim (<5 + ) = sy and

00 b b
Ldx = T f T X3 1 1 Ly 1
- dx = lim X" 7dx = lim [——} = lim (—35 + 5 ) = 35+5
j:o X* b oo J10 b o0 3 0 OO( 303 3000) 3000

b—

= 1.082036583 + 5oz < 5 < 1.082036583 + 5o = 1.08229 < s < 1.08237

(b) s = Zl % ~ 1.08229-5 1.08237 __ 108233, error S 1.08237; 1.08229 __ 0.00004
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10.4 COMPARISON TESTS

[o¢]
1. Compare with > n% which is a convergent p-series, since p = 2 > 1. Both series have nonnegative terms forn 1. For
n=1

n 1, wehaven? <n?+30= n% Then by Comparison Test, Z +%0 converges.

n2+30

(o 0]
2. Compare with Y %, which is a convergent p-series, since p = 3 > 1. Both series have nonnegative terms forn 1. For
n=1

oo
n n 1 n n—1
=9 TETY mo n4+2 Then by Comparison Test, 21 2
n—

1

4 o o4 1
n lwehaven" <n"+2= 5 o5

converges.

3. Compare with Z \/— which is a divergent p-series, since p = % < 1. Both series have nonnegative terms forn 2. For

[o0)

n 2, we have

ﬁ. Then by Comparison Test,

4. Compare with Z , which is a divergent p-series, since p = 1 < 1. Both series have nonnegative terms forn 2. For
n=2

[o0]

1 n n _ 1 n+2 n 1 n+2 g:

1o 3=, = o o= . Thus Ez - diverges.
e

n 2, we have n?

[o 0]

5. Compare with ) #, which is a convergent p-series, since p = % > 1. Both series have nonnegative terms forn 1.

[o 0]

Forn 1,wehave0 <cos’n< 1= C";/z“ < 5. Then by Comparison Test, > C"f/zzn converges.
n=1
[o 0]
6. Compare with ) 3—1n, which is a convergent geometric series, since |r| = ’%‘ < 1. Both series have nonnegative terms for
n=1 N
n l.Forn 1,wehaven-3" 3"= < % Then by Comparison Test, 5 -1 — converges.
n=1
7. Compare with Z 5. The series Z ; ; is a convergent p-series, since p = 3 > 1, and the series ) ng
n=1 n=1 n=1

o0
= \/g > ﬁ converges by Theorem 8 part 3. Both series have nonnegative terms forn 1. Forn 1, we have

n=1

n’ <n*=4p’ <dn*=n*+40° <n*+4n* =50 = n* +40° <5n*+20=5(n*+4) = "ij’ff <5.

’(n+4 4 4
= nrff+4> <5 Ml <5 <& = m Then by Comparison Test, Z g converges.

8. Compare with Z \[ which is a divergent p-series, since p = % < 1. Both series have nonnegative terms forn 1. For
n 1,wehave\/ﬁ 1=2y/n 2=2y/n+1 3=n(2y/n+1) 3n 3=2ny/n-+n

=n>+2ny/n +n n2+3:>% 1:% %:% Loy 61; f

Vatlo : \/— +1
= e Then by Comparison Test, 2::

dlverges
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11.

12.

13.

14.

15.

16.

o0
. Compare with ) ﬁ, which is a divergent p-series, since p = % < 1. Both series have positive terms forn 1. lim &
n=1

Section 10.4 Comparison Tests 591

(o 0]
Compare with > n%, which is a convergent p-series, since p = 2 > 1. Both series have positive terms forn 1. lim &
— n—oo - n
— lim %22 — lim
n—oo 1/1’12 n—oo

n’ —2n?
nd—n2+3

6n—4

= lm 3n2 n = n]Lrgo > = 11m 2 =1 > 0. Then by Limit Comparison Test,

=2 converges.

NgE

=3
Il

b

n—oo 1
n+l > 5
= lim ¥ “ = lim /%0 =/ lim 540 =/ lim 221 =/ lim 2 = \/1 = 1 > 0. Then by Limit Comparison
n—oo /v nleo V MH2 n—oo I 2 n—oo 20 n—oo 2 f Y p
n+1 g3:
Test, Zl a5 diverges.
n—

Compare with E , which is a divergent p-series, since p = 1 < 1. Both series have positive terms forn 2. lim {*

n—oo “n
n(n+l)
e ) L I s QO [t R | oy S S R > 0. Then by Limit Comparison
T oo 1/n T onmeo —n?n—1 T P 3n2—2n+1 T Tl 6n—-2 T U6 : y p
> n(n+1)
Test, z (CESI ) diverges.
o0
Compare with > % which is a convergent geometric series, since |r| = ‘%‘ < 1. Both series have positive terms for
n=1
a s L L aving - . o~ 2"
n L lim{® = lim 355 = lim 355 = lim %3 = 1 > 0. Then by Limit Comparison Test, ) 5+ converges.
n—oo On n—oo 1/ n—oo 31 n—oo 7 1M n=1 " +

[o¢]
Compare with > ﬁ which is a divergent p-series, since p = % < 1. Both series have positive terms forn 1. lim &
n=1

n—oo "
5n

[o0)
n n n
= lim £~ = lim 2 = lim (2)" = co. Then by Limit Comparison Test > _ diverges.
n—o0 1/ n—oo 4" n—oo (4) y P ’ ,; ﬁ.4n g
. s 2 n . . . . . 2 . ..
Compare with > (g) , which is a convergent geometric series, since [r| = |z| < 1. Both series have positive terms for
n=1
noo1GimE = fim G o gim (11" exp Jim In(LE15)" — exp lim nln(l0t15)
oMy, = e = M Clon s p m n{on g p m 10n+8
: (Trss) e 101110+8 70n> 70n>
= €xp nlLHOL 0 XP nhjglo i/ SXP 11m N Ton+15)(1n+8) — XP nhm 100n2 + 230n + 120
140n i 140 _ L7/10 . : 2n+3)"
= exp lim 555 = exp lim 355 = e7/!% > 0. Then by Limit Comparison Test, Zl (32£3)" converges.
=

Compare with Z , which is a divergent p-series, since p = 1 < 1. Both series have positive terms forn 2. lim &

n=2 n—»oob"
1 o) 1
o E FE _ . . R
= lim f = n]gg@ o= nanO]C i/ n]Lr&n = o0. Then by Limit Comparison Test, » - diverges.
n=2
[o 0]

Compare with Z >, which is a convergent p-series, since p = 2 > 1. Both series have positive terms forn 1. lim &

— n—oo "

1 2
In(1+ % [ *,,7) o
= lim (]/+2') = lim H"z() = lim —+ = 1 > 0. Then by Limit Comparison Test, >_ ln(l + %) converges.

n—oo n—oo 1+ 2
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17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

. converges by the Direct Comparison Test;

Chapter 10 Infinite Sequences and Series

diverges by the Limit Comparison Test (part 1) when compared with ﬁ , a divergent p-series:

()

nlem ( 1 ) = nleoc Z\f{f n~>oo (2+11r1/6) = %

%I

diverges by the Direct Comparison Test sincen+n+n >n+ ﬁ +0 = nﬁ 7 > % , which is the nth

term of the divergent series » % or use Limit Comparison Test with b, = %

n=1

s1nn<1

< 3 , which is the nth term of a convergent geometric series

t; 1+cosn < 2

converges by the Direct Comparison Tes and the p-series Z 5 COnverges

. . . 2n  __ 2
diverges since lim =7 =3 #0

converges by the Limit Comparison Test (part 1) with # , the nth term of a convergent p-series:

lim_ Qfl) — lim_ () =1
- (n:z/z) =

the nth term of a convergent p-series:

converges by the Limit Comparison Test (part 1) with s
20n+1

10n+1
("("+])<"+2)> _ 10n°+n __ I T 20 _
nll>moo (L) _n1l>moo n?+3n+2 nleoo 2n+3 _nlgnoo 2 = 10

n2

converges by the Limit Comparison Test (part 1) with -3 , the nth term of a convergent p-series:
5n% —3n 15n% -3

( 5n3 —3n

n2(n—2) (n2 +5>

1 N 0 N 7 __on"—5n  __ _15n" -3 __ 30n __
nll>moo ( _n1i>moo n3 —2n2+4+5n—10 nll>moo 3n2—4n+5 _nll>moo 6n—4 =5

2=

converges by the Direct Comparison Test; (5:2)" < ()" = (3)". the nth term of a convergent geometric series

converges by the Limit Comparison Test (part 1) with # , the nth term of a convergent p-series:

. <3/7 _ . 2
nll>moo ( 1 _nleoo \/ nleoo V 1+n—3—

J+

1
Inn

oo
diverges by the Direct Comparison Test;n >Inn = Inn>1Inlhn = % < < ln(l+n) and ZS % diverges
=

converges by the Limit Comparison Test (part 2) when compared with Z -7 » a convergent p-series:

n=1
[ (In n)2 }
. 3
lim =

n— oo (

. 2 . 2(In n) % .
= lim 0 — |y 7( ) =2 lim D=9
) n—=o00 n n — 0o 1 n-—oo n

diverges by the Limit Comparison Test (part 3) with % , the nth term of the divergent harmonic series:

1 1
nlem %_ngm %anme <(\5) n—oo 2
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30. converges by the Limit Comparison Test (part 2) with & , the nth term of a convergent p-series:
n>/

(lnn)z 2Inn 1
. 3/2 . 2 . . . = .
lim M = lim_ W0 — fim Cat) _ 8 lim o =8 lim G)__ 32 lim -y =32-0=
n— 00 1 n—oo nl/t n— 0o 1 n—=oo n/t n— 0o 1 n—oo nl/t
W5/ m3/1 m3/1

31. diverges by the Limit Comparison Test (part 3) with % , the nth term of the divergent harmonic series:

() _

. . o . 1 o . _
oM, 6 = plim, l+nlnn_n1Lmoo @-ngmmn—m
32. diverges by the Integral Test: f metD gx = fmu du= lim [{u?] ® = lim 1 -In?3) =00
X+l In3 b— o 2 In3 b— o0 2

33. converges by the Direct Comparison Test with — n3/2 , the nth term of a convergent p-series: n?> — 1 > n for

n 2=nm-1)>n =n/n2-1>n? = 2 > \/1)71 or use Limit Comparison Test with
77

34. converges by the Direct Comparison Test with ns% , the nth term of a convergent p-series: n> + 1 > n?

= n’+1>/mn*? = % >n’? = % < = or use Limit Comparison Test with —1-

o0 o0 o0
1-n __ 1
35. converges because =2 ot L which is the sum of two convergent series:
n=1 n=1 n=1
o0 1 00
> = converges by the Direct Comparison Test since n—2n < @ ,and > ;—“1 1s a convergent geometric series

n= n=1

oo oo
36. converges by the Direct Comparison Test: 1 “njzﬁ = z:l (n—én + ) and =; + % < % + n% , the sum of
n= n=

the nth terms of a convergent geometric series and a convergent p-series

1

37. converges by the Direct Comparison Test: 7+

< which is the nth term of a convergent geometric series

1
3n 1

n— oo

38. diverges; lim (3";ln+1) = lim ({+4)=1+#0

o0
39. converges by Limit Comparison Test: compare with > (%)n, which is a convergent geometric series with |r| = é <1,
n=1

n+1 1
. <n2+3n'5_") _ : n+1 __ . 1 _
nleoo /5" nleoo nZ+3n nlgmoo 2n+3 0

[o0)
40. converges by Limit Comparison Test: compare with (%)n, which is a convergent geometric series with |r| = % <1,
n=1

\oc

) +1
)+ 1

li (%:13: li 8"+ 12" li (
n i>Ino() (3/49)" T n l>Inoo M+12" T n i>1’noo (

S

_ 1 _
=;=1>0.

NIV”

41. diverges by Limit Comparison Test: compare with Z , which is a divergent p-series, leOC <;';; ) = leOO 2"2: 1
S E 2'm2—1 _ 7 2" (In2)
- nlgnoo 2'?1112 nlgmoo 20 (In2)* =1>0.

42. diverges by the definition of an infinite series: > ln( o) = [ln n—In(n+1)],sx =(In1—1n2)+ (In2 —In3)

n=1

+ ...+ (n(k—1)—Ink) + (Ink—In(k+ 1)) = —In(k + :) llmoosk:—oo
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43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

converges by Comparison Test with Z —) which converges since Z m = > {nll — ﬂ,and
n=2
_ 1_ 1 1 1 1 1y _ _1-
Sk = (1*5)4’(5*5)4’ +(m*m) +(m*g) —1*E ékli)moosk_ 1; forn 2,(n72)!

=nhn-1)(n-2)! nhn-1)=n! n(nfl)énl!gﬁ

converges by Limit Comparison Test: compare with Z o7» Which is a convergent p-series, 11me0 e

1
n=1 /n
1 n(n—1)! 1 n® 1 2n . 1: 2

- n1l>moc (n+2)(n+n(n—-1)! — nll>moc n2+4+3n+2 n1i>moo 2n+3 nli>moo 2 1>0

diverges by the Limit Comparison Test (part 1) with % , the nth term of the divergent harmonic series:
in L .
B = i, 22 =

lim
n— oo

diverges by the Limit Comparison Test (part 1) with % , the nth term of the divergent harmonic series:

. (ani) . 1 (sinly . inx\ .
nll>moo (%) - nll>mgo (Cos%) (%) - XIE)IIO (coix) (%) =1-1=1

- I

o0
2 =23 i is the product of a

T 00
converges by the Direct Comparison Test: “”riul < Zand )

i
=

convergent p—series and a nonzero constant

. . . 1 cor 1 (I) > N ) 1 -
converges by the Direct Comparison Test: sec™ n < g = 0 02/ g Z 2 = % > 7 is the

product of a convergent p-series and a nonzero constant

coth n
n2 _

converges by the Limit Comparison Test (part 1) with ;5 : lim =/ ) = lim_cothn= lim £+
‘,TQ
= lim el
n—oo 1-
tanh n
converges by the Limit Comparison Test (part 1) with % f li>moc (“12>> = leOO tanhn = ILmOO 2:;—2::
rTQ

. _ .—mn
= lim 1= =1

n-—oo l+e2

diverges by the Limit Comparison Test (part 1) with %: . li)mOO

converges by the Limit Comparison Test (part 1) with % o lim

1 1

o E E e S G n(n+ 0y The series converges by the Limit Comparison Test (part 1) W1th
C))
. n(n+1 _ 2n2 _ 4n _ . 4 _
n1l>moo (%) _nlgnoc n-+n_n1—>moo 2n+1 _nlgnoo 2_2'
2

1 _ 1 _ 6 é . . .

TR R WEIEED G DD < 5 = the series converges by the Direct Comparison Test
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55.

56.

57.

58.

59.

60.

61.

62.

Section 10.4 Comparison Tests 595

(a) Ifnlem g—“ = 0, then there exists an integer N such that for all n > N, g—" - 0‘ <l = -1< ﬁ—“ <1

= a, < by. Thus, if > b, converges, then Y a, converges by the Direct Comparison Test.

(b) Ifnlem E—: = 00, then there exists an integer N such that for all n > N, a—n > 1 = a, > b,. Thus, if

> by diverges, then > a, diverges by the Direct Comparison Test.

o0
ay . . a
Yes, ) ™ converges by the Direct Comparison Test because T < a,

n=1

nlem % = 0o = there exists an integer N such that foralln > N, & > 1 = a, > b,. If > a, converges,

then Y b, converges by the Direct Comparison Test

a, converges = lim a, = 0 = there exists an integer N such that foralln > N,0<a, <1 = < a
g lim 0 = th t teger N such that for all N,0 < 1 a’

= 3" a2 converges by the Direct Comparison Test

Since a, > 0 and nli}mOo a, = oo # 0, by n'" term test for divergence, > a, diverges.

. . 2 . 1 . . . . .
Since a, > 0 and nlem (n”-a,) = 0, compare ) a, with ) -, which is a convergent p-series; lim

_ . 2 _ . . .
= lim_(n”-a,) =0 =3 a, converges by Limit Comparison Test

Let —co < g < ooandp > 1.If g = 0, then f:z (l‘;';)q = iz n—lp, which is a convergent p-series. If q # 0, compare with
é L where 1 <1 < p, then Him :“ﬁj = lim (l:prl),q, andp—r>0.1fq<0= —q>0and lim_ (1:;1),‘]

= lim e = 0.06q > 0, fim B0 = gim ATG) gy 00 g 1< 0= 1-q  Oand
Jlim (q;lfrr’));:r = lim_ m = 0, otherwise, we apply L'Hopital's Rule again. lim %

= nlem %. Ifq—2<0=2-q Oand nlem % = nlem % = 0; otherwise, we

apply L'Hopital's Rule again. Since q is finite, there is a positive integer k such thatq —k < 0=k —q 0. Thus, after k

icati Honital' i lim 4@-Do(@-ke D) al@=D-(goke D) i imit i
applications of L'Hopital's Rule we obtain _lim FEREE = lim (oD § 0. Since the limit is

(Inn)¢
P

[o.¢]
0 in every case, by Limit Comparison Test, the series >
n=1

converges.

(Inn)?

NgE!

Let —oco < q<oocandp < 1.Ifq =0, then #, which is a divergent p-series. If ¢ > 0, compare with

n=2 " n=2
S (inn)d q x
_— . . . W _ .
n;z o> Which is a divergent p-series. Then | lim = 77 = lim (Inn)? = 00.If g < 0 = —q > 0, compare with l; o
(Inn)4
. P . Inn)¢ . r—p . ' . ' .
where 0 <p <r < 1. nlgnOC i /‘;, = nleoo (np,), = nll)mOO (12 o) sincer —p > 0. Apply L'Hopital's to obtain

: (—pp®' (r—p)n? P : (r—pnP(nm) ™
nlgmoo Catan (0 — nlem Cann) ™ If-q—1<0=q+1 Oand nleOO = = 00,

(r—pPn L (—pfa
Cata— im0 — 0 M Cgimg-nmm - 1

_ (=pln g (r—pPnP(nn)d"?
Colca- D — ni ~q(=a-D)

apply L'Hopital's Rule again. Since q is finite, there is a positive integer k such that —q —k <0 =-q+k 0. Thus, after

(r—p)n"® — 1im (r=p) 0" P(Inn)**
(=) (—q—1)---(—q—k+1)(Inn) @™ 7 n—=o00 (-9)(-q—1)-(—q—k+1)

otherwise, we apply L'Hopital's Rule again to obtain _ leOC

—q-2<0=q+2 Oand lim_ = 00, otherwise, we

k applications of L'Hopital's Rule we obtain o lim = o0.
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63.

64.

65.

66.

67.

68.

69.

Chapter 10 Infinite Sequences and Series

(o)
Since the limit is oo if ¢ > 0 or if ¢ < 0 and p < 1, by Limit comparison test, the series »

n

n=1

(Inn)?
nP~T

diverges. Finally if ¢ < 0

andp = 1 then > “‘;{,‘)“ =5 b n)? Compare with ) 1, which is a divergent p-series. Forn 3, Inn 1
n=2

n=2 n=2

= (nn)® 1= O Ly S0 giverees by C ison Test. Thus, if — dp<1
o o o ges by Comparison Test. Thus, if —co < q < ocoandp <1,

[ee]
. (Inn)? ..
the series ) = diverges.
n=1

Converges by Exercise 61 with q = 3 and p = 4.

Diverges by Exercise 62 with q = % andp = %

Converges by Exercise 61 with ¢ = 1000 and p = 1.001.

Diverges by Exercise 62 with q = 1 and p = 0.99.

Converges by Exercise 61 withq = —3 and p = 1.1.
Diverges by Exercise 62 with q = —% andp = %

Example CAS commands:
Maple:
a:=n-> 1./n"3/sin(n)"2;
s :=k ->sum( a(n), n=1..k ); # (a)]
limit( s(k), k=infinity );
pts := [seq( [k,s(k)], k=1..100 )]: # (b)
plot( pts, style=point, title="#69(b) (Section 10.4)" );
pts := [seq( [k,s(k)], k=1..200 )]: #(c)
plot( pts, style=point, title="#69(c) (Section 10.4)" );
pts = [seq( [k,s(k)], k=1..400 )]: #(d)
plot( pts, style=point, title="#69(d) (Section 10.4)" );
evalf( 355/113);
Mathematica:
Clear[a, n, s, k, p]
a[n_]:=1/(n? Sin[n]?)
slk_]= Sum[ a[n], {n, 1, k}]
points[p_]:= Table[{k, N[s[k]]}, {k, 1,p}]
points[100]
ListPlot[points[100]]
points[200]
ListPlot[points[200]
points[400]
ListPlot[points[400], PlotRange — All]
To investigate what is happening around k = 355, you could do the following.
N[355/113]
N[m — 355/113]
Sin[355]//N
a[355]//N
N[s[354]]
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NI[s[355]]
NI[s[356]]

70. (a) LetS Z iz which is a convergent p-series. By Example 5 in Section 10.2, > m converges to 1. By Theorem 8,
n=1 n=1

S =

M8
?J"
NgE

n

1 e R S T = S | & 1
h n(n+1) +r12::l nﬁig n(n+1 _]12::1 n(n+1) +HZ::I (p*m) alsoconverges.
(b) Since Zn —i7y converges to 1 (from Example 5 in Section 10.2), S = 1 +nZ::1 (% - WIH)) =1 +n;7nz(nlﬂ>

(o)

(c) The new series is comparible to %, so it will converge faster because its terms — 0 faster than the terms of
n=1 n

1000 1000

(d) The series 1 + Z glves a better approximation. Using Mathematica, 1 + Z

gk

1
n2*
1

TEET) = 1.644933568, while

1000000
> n_12 = 1.644933067. Note that %2 = 1.644934067. The error is 4.99 x 10~7 compared with 1 x 107°.

10.5 THE RATIO AND ROOT TESTS

n—oo ", n+1

on+1 (o 0]
1. £ >0foralln 1; lim ( o > = lim (ﬁ . ;—"') = lim (-%;) =0 < 1= 32 converges

I

_

=
—

(n+1) +2
2 . : n : 3 3" _ T 3 15 1
2. %5 L nlggc< 3%:2] > Sm 55 ps) = Jlim (55%) = lim (3) = E

((n+1)—=1)1
3. 0=D's Oforalln 15 lim (“ﬁ‘i,‘“) = lim (M ) = tim (D) gim ()
n+1 n : 00

( )2 o0 o n2+4n+4 N—00 2n+4

= Jim (54) =

=00 n= 1 )

o0 nan—1 n—oo \ (1+1)-371:3 n—oo 3N +3

e
4. 22 S 0foralln  1; lim (””) = lim (G2 ) = lim (525) = lim (3) =3 <1

o0
n+1
= > Z converges

n=1

n* grian ; (+1)* g0 ; *+4n> 4 6n> +4n+ 1
5. % >0foralln 1; lim | £~ | = hm( : 'F): hm(%)

n—00 411 n—00

[ee]
— lm(lela 3ty 1yt n
= HILTC(“ Foitspt st 4n4) =;<1= 214n converges

3142 s

n+2 Tnmel) . n+2, . . = .

6. 3 —>0foralln 2; lim | =28 ) = llm( 33 l'n‘fz) = llm( 3lnn ) = lim (&) = lim (2£2)
n—o0 Inn 3 n n+ n

=lim(3)=3>1= Z " diverges

n—oo

ni3% n—00 ot noo\ ()33 2 (n+2)! a7 9n3 1 on2

(n+1) ((n2+1)+lz . L
7. n’(n+2)! >0foralln 1; lim (n+1 2'3 o+ ) — lim ((n+ Yn+3)(n+2)!  pig2n ) — lim (n-+5n*+7n+3)

n%(n+2)!
n!32n

8

2
= lim (73“ +'5“+7) = lim (&t 1 N=lc1=> converges
SIS 180 n_,oo(54n+18) ( ) =3 g

n=1
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(n+1)50+1
5 . e [ CEEvEvR@EDED | g +1)5"5 2n+3)In(n+ 1
8. (2n+3“)1n(n+l> > Oforalln 1; I}E&(W) — nlggo((zn(isﬂl(n+2) . (n n)Asrrll(n ))
— i (S0 D)En43) @+ DY qo (10024250415 (In@m+ DY _ 1 (200425 (&
= Jim (i i) = Jim (05) - lim () = lim (43) - Jim (22
= () () =5 dm () 251255 15 3 et diverses
7 N Y B T V1 \ S~ _1
9. ICFSN Oforalln 1; nlLIIOlO sy = nlir&(2n+5) =0<1 :>I12::1(2n+5>n converges
4n . . n 4n _ o
10. Gy Oforalln 1; nlirglc G = HILI})lo(3 ) 0<1=> Z (3 Gnyr cOnverges
4ng3\D C ol o (E3\D o (4n43) g _ 4 o (dnt3\0 g
1L (5%5)" Oforalln 2 lim (353) = nll,‘go(hts) = 1}13;0(%) =3>1= ;(ﬁ) diverges
n+1 n+l 1+1/n
12 (@ + D] oforalin 13 gim ¢/ [n(e+ 1) = lim (@ + D] T =) =2>1
e n+1
=3 {ln (e + %)} diverges
n=1
8 _ . . 8\ _ 1 8
13. R Oforalln 1; nlilglo % nlirglo( %)2) 5 <1 jnz::l e converges
. 1 n . L L . B n
14. [sm(ﬁ)} Oforalln 1; nlirglc sm \/H nlgg) sin ﬁ) =sin(0) =0< 1 :>HZ:1 [sm(ﬁ)} converges

15. (1 - Il—l)nz Oforalln 1; lim v/ ( lim ( %)n =el<l=> i (1- %)nz converges
n—oo n_’oo n:l

16. L. Oforalln 2; lim ¢/-k = lim (,@1) - nlirgc(%) —=0<1=Y L converges

n
n—oo n—o0 n \/H n—2

|:(n+ l)ﬁ:I \[
. . . ot . Vi . 2
. angl — m+DHVE 20 1 1y 1
17. converges by the Ratio Test: nILmOO = nILmOO [nﬁ} = nILmOC o = nleoc (1 + n) (2) =35<1
on
(2:) : 2
: . : Al T el _ m+1)" e 1 1y 1
18. converges by the Ratio Test: I1lgmOO = nleOC (#) = rlILmOO T g = im (1 + H) (g) ==-<1
((ntrl])!) (n+ 1!
. . . . el . en _ . n+D! " . n+1 _
19. diverges by the Ratio Test: nleoc = nleoo @ = nll)moO e I leoc — =00
((nﬂi[) (n+1)!
; ; T sl T; 100 T n+1! 100 _ g n
20. diverges by the Ratio Test: nleOO = nleoo el nleOO o T T = ngmw 5 = o©
((nmif’) 0 0
. . . antl . 100+ _ . (n+1) N 100 . 1 1) 1
21. converges by the Ratio Test: nlgnOO —a: = nILmOO (%) = nleoo T nleoo (1 + n) (10) =15 <1
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22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

diverges; lim a, = lim
n— oo n— oo

(=3)"

= lim

n—

[o¢]

converges by the Direct Comparison Test: 2(Jlr (;5,;3 =
geometric series
converges; a geometric series with |r| = |— %| <1

diverges; lim a, = lim
n— oo n— oo

diverges; lim a, = lim
n— oo

diverges by the Direct Comparison Test:

: 1
with 0t

converges by the nth-Root Test: n ILmOO van = leOO

diverges by the Direct Comparison Test:

converges by the Ratio Test:

converges by the Ratio Test:

converges by the Ratio Test:

converges by the Ratio Test:

converges by the Ratio Test:

converges by the Ratio Test:

converges by the Ratio Test:

“alh Ty T

converges by the Root Test:

(1-3

lim
n— oo
lim
n— oo
lim
n— oo
lim
n— oo
lim
n— oo
lim
n— oo
lim

n— oo

lim
n— oo

a,  n-—>oo0 3m+ D3 T (nt3)

nn n __ 1
5 < .3 = forn
. In n)° .
im, /%2 = i,
_ 1 _n-1
n2 = n?

L\ R— lim
an n— oo
et i
an n— oo
e i
an n— oo
fil —  lim
dnil —  lim
an n — oo
&il —  Jim
an n— oo
i
an n— oo
Wa, = lim
n— oo

Inn 1
=h > < forn

Wl

Section 10.5 The Ratio and Root Tests

(1+=2)"=e24£0

)= lim (1+32)" =e?~005#0

n
—)> =e 13 x~0724£0

3
(m+1DIn(n+1) on 1
on+l “hlnm 2 <1

m+2)n+3) n! _

(n+ D! n+D(n+2) 0<1
(n+1)3_§_;<1

en+] n:i - e

(n+4)! 3in!3" n+4

1 1
T n>o00 3o+ T3

<1

2, the n'" term of a convergent p-series.

m+ 12" +2)! 3! T n+1 2\ (n+
3+t D) DD = o M ( n ) (3) (n+
4D @o+D! g n+1 _
@2nt3)! i = oM Gy = 0< 1
O+ o g n \D g 1
-+ ol T n1l>mgo (n+1) - n1l>moo (n:l)“
n_ Y oy L —
V (In n)» nl>oo lnn7n1_>moo ]nnio<1
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n— oo

()

1

= (;—‘)n R2+(D < (%)H(S) which is the n'" term of a convergent

n2

=0<1

)=0<1
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. 1 n — 1 n n — 1 % — nlLrgc \"/H —
40. converges by the Root Test: lim y/a, = lim v/ T = L im Vinn = Jim Vi 0<1

(slimg v =1)

: : . nllnn __ Inn n _ 1 1
41. converges by the Direct Comparison Test: 2l T T heTY < mmihaid) T aihaTD < @
which is the nth-term of a convergent p-series
. . . . ansl . 3n+l n32n _ . n} 3 _ 3

42. dlverges by the Ratio Test: nli}moc ﬁ = nleOC [CES nli)moo CETS (5) =3 > 1

~ C ol e pn DT @mr o el wandl 1
43. converges by the Ratio Test: | lim === = lim 5=y W WM G2t D = oM arensz — 4 <1

. T el 1 @452 43) oy 45 26" +42"+3.37 46
44. converges by the Ratio Test: nlgmoo = nlgnOC e BAIn T3 = Illgnoo i3 3e o3 aoTie

— T 2045 : 26" 442" 433" 46| _ 1.2 _ 2
= im {2n+3} "l {3~6“+9~3"+2~2"+6:| =l-3=35<I
1 +sinn
45. converges by the Ratio Test: _lim 2t = [im EMa _ g g
n—00 4 n— oo an
<l+lan ln)an 4
46. converges by the Ratio Test: _lim 2+ = lim -~ 2" — [im 1811 — (gince the numerator
n—oo a4 n— oo an n— oo n
approaches 1 + 5 while the denominator tends to oo
47. diverges by the Ratio Test: _lim @ — lim 3 _ iy 3=l _3 o
’ g y ‘n=00 a4  n-—o00 ap T n—oo 2n+5 " 2

48, diverges: v = a0 = ana = (727) (5 ) = ava = (527) (5 (223 )

= a1 = (72) (54) (2=3) - (3) & = an1 = %5 = ay41 = 7o . which is a constant times the

general term of the diverging harmonic series

2
2) 5. .
49. converges by the Ratio Test: _lim_ 2 = im <“> = lim %2=0<1
n—oo n— oo an n—oo n
. . a . (4) an . {1/5 1
50. converges by the Ratio Test: lim = = lim  -~—*— = lim =3 <1
n—o0 a n— o0 ap n—oo n 2
(l+lnn) .
51. converges by the Ratio Test: _lim_ % = lim 22" = Jim 40— |im l=-0<1
n — oo an n — oo an n — oo n n—oo n

52. “HT?O“ >0anda; = § = a, >0;Inn>10forn>¢’ = n+Inn>n+10 = "HT'I‘O" > 1

= apny] = a, > ap; thus a, | > a, = nlem a, # 0, so the series diverges by the nth-Term Test

n+lnn
n+ 10

53. diverges by the nth-Term Test: a; = §, 2, = /3, a3 = 1/ \z/g = \"’/I, ag =4

a,=1{/1 = lim_ a, = I because { v %} is a subsequence of {\/;} whose limit is 1 by Table 8.1
n— oo 3

1
2
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Section 10.5 The Ratio and Root Tests 601

54. converges by the Direct Comparison Test: a; = 1, ay = (%)2 ,a3 = ((%)2>3 = (%)6, ay = ((%)6)4 = (%)24,...

! A . .
= a, = (%)n < (%)n which is the nth-term of a convergent geometric series

2o+ DI+ D! @) 2+ D@+ 1)

. L aet 1 .
55. converges by the Ratio Test: nILmOO = nlgnOC G ) Sntnl = nILmOO RSN
_ : n+1 _ 1
_n1i>moo n+1 2 <1
: : . : Al 13 (3n +3)! _nl(@m+ Dl +2)!
56. diverges by the Ratio Test: nleoo = nlgmOO CESNICESICE) Gl
5 Gn+3)HB+2Gu+1D _ 3n42Y) (3n4+1) _ _
= lim, ey =l lim, 3(352) (§55) =3-3-3=27>1

. . . . . S .
57. diverges by the Root Test: nlgnOO Wa, = lim = lim % =o0c0>1

n — 00 (m? ~ n—o00 n

58. converges by the Root Test: _lim_ ¢ LD [ (ni)nn = 1l Mo— im (1) (2) (3) ... (n=d) (B
n— 0o n" n— 0o (nm) n—oo n n—oo \n/ \n/ \n n n

n

< lim f=0<1
n— oo

. . N _ . NS L . n _ . 1 _
59. converges by the Root Test: lim  y/a, = lim /-5 = lim 5= lim 5495 =0<1
: . 1 n — 1 Py L 1 n_
60. diverges by the Root Test: nILmOO Way, = nleoc @y = nILmOO 1=00>1
- C i Bl gy 13GnoD@n4 D 4rral il 1
61. converges by the Ratio Test:  lim =% = lim —— =g T 3 on 1) — L im @Gyasn — 1< 1
. .. 13--@n-1)  _ 1234--Qn—D@2n) _ (2n)!
62. converges by the Ratio Test: a, = TL WmE D) = @A E D) — @3 i)
. (2n + 2)! C@m)’ @+ g @n+1)@2n+2)(3" + 1)
= nll>moo 27+ DI (30 + 1) n)! _nleoo 2m+ D2 (3" + 1)
_ 1 4’ +6n+2Y) (1+3™) 1_1
= plim (4n2+8n+4) G = 1-3=3<I
A : Angel 1 n? _ : n P __ _ :
63. Ratio: lim *% = lim ol - = lim (25)" = 1" =1 = no conclusion
e T T AT 11 :
Root: nleoo Va, = nleoo 5= nleOC WP = aF = 1 = no conclusion
64. Rati li At li 1 (In n)P Inn b li (é) ’ li n+1 P
- Ratio: n e T Ty maror 1 T [anoo 1n(n+1)} = oMM =) | — (anoo )

= (1)) =1 = no conclusion

R n . H W1 _ 1 . _ 1/n _ In(nn)
Root: nhmm‘/a“*nlimoo TP = (lim (lnn)l/n)p,letf(n)f(ln n)'/", then In f(n) = =
n—oo
1
= fim_ Infn) = lim 100 — g G = fm o L =0 = lim (nn)/
n — oo n— oo n n — oo 1 n—oo nlnn n— oo

1 = L. =1 = no conclusion

= lim e =0 = 1; therefore lim /a,= —L1 =
n— oo i n'=— 0o n (nli>lgo (In n)l/n>p ()

65. a, < 5 for every n and the series }° g converges by the Ratio Test since  lim R

n=1

= > a, converges by the Direct Comparison Test

n=1
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n2 M n2+n+ n+ n n
66. - >0foralln 1; lim ([—)) = hm(2—2—) = nm(? ) = lim (22) = lim (240n4)

n—00 nooo \ (nF1)-n! n—oo 01 n—oo

n!

0 2
=o00> 1= 2 diverges

n=1
10.6 ALTERNATING SERIES, ABSOLUTE AND CONDITIONAL CONVERGENCE

1. converges by the Alternating Convergence Test since: u, = ﬁ >O0foralln 1;n 1=n4+1 n=+n+1 \/H

1 1 . . 1
< — < Un: — I
= iy = Upt1 < Uy, nlLr&un n]Lrgo\/E 0

(o 0] [o0)
2. converges absolutely = converges by the Alternating Convergence Test since > |a,| = > n?,% which is a

n=1 n=1

convergent p-series

3. converges = converges by Alternating Series Test since: u, = n%" >O0foralln 1;n 1=n+1 n=3"" 30
= Mm+1)3" 3= Ll < L=y, <u; limy= Ilim-L; =0.

(n41)37F1 — n3n 00 oo f3

4
(Inn)?

4. converges = converges by Alternating Series Test since: u, = >0foralln 2;n 2=n+4+1 n

2 2 1 1 4 4 )
=In(n+1) Inn=(In(n+1))" (Inn)" = o S G = WP S [P = Unl S Un
. _ . 4 _
fimuy = Jim 5 =0
5. converges = converges by Alternating Series Test since: u, = ;%5 > Oforalln  I;n 1= 2n>+2n n’+n+1

=n*+2n+2n n’+n*+n+1=n(n’+2n+2) n3—|—n2+n—|—1:>n<(n—|—1)2+1) M+ 1)n+1)
=0.

n n+1 < -0 _ : n
imu, = Ilim ———
= P (141 = Upy1 S Ups nﬂocun ST

. . . . . 2 . 112 .
6. diverges = diverges by n" Term Test for Divergence since: lim 52 =1 = lim (—1)""' 25+ = does not exist
n>+4 n’+4
n—oo n—oo

7. diverges = diverges by n" Term Test for Divergence since: lim %; =o00= lim (71)n+1 %; = does not exist
n—oo n—oo
00 [e¢] 0
8. converges absolutely = converges by the Absolute Convergence Test since ) |a,| = > ﬁ, which converges by the
n=1 n=1
: : : antl o 10 __
Ratio Test, since nll»rgo = nll»rglo = 0<1

9. diverges by the nth-Term Test since forn > 10 = > 1 = lim_ ()" #0 = > (—D)!(&)" diverges
n=1

1

10. converges by the Alternating Series Test because f(x) = In x is an increasing function of x =

is decreasing

. : 1
= U, Uy forn 1;alsou, Oforn landnleocm—O

11. converges by the Alternating Series Test since f(x) = me = f'(x) = 1—)(# < 0Owhenx >e = f(x)is decreasing

1
. : T )
= U, Uprq;alsou, Oforn landnlgmOO un—nlgnOO - —nleoo =0
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12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Section 10.6 Alternating Series, Absolute and Conditional Convergence

converges by the Alternating Series Test since f(x) = In (1 +x71) = f'(x) = oD + 0

= U, Upypsalsou, Oforn  land lim u, = lim_1In (1+1)=1In (nlem (1+ %)) =Inl=0

converges by the Alternating Series Test since f(x) = Vit = f'x) = 5 \[X (;i‘l/; < 0 = f(x) is decreasing

X+ 1
= u, U,;;alsou, Oforn 1land lim u, = _lim Vikal =0
n — oo n—oo n+l
. . . NES R \/1 :
diverges by the nth-Term Test since lim_ Y2+ lim A
n=0oo yn+l — n= 5N (\Lf

1

00 o0
. n . .
. converges absolutely since Y |a,| =Y (75)" a convergent geometric series

n=1 n=1

1

(=)™ 0.1)"
n ~ (10)"n

< (%)n which is the nth term

converges absolutely by the Direct Comparison Test since ‘

of a convergent geometric series

NgE
‘H

ni/2

o0
converges conditionally since ﬁ > \/nlﬁ >0and lim ﬁ =0 = convergence; but ) _ |a,| =

n=1 n=1

is a divergent p-series

.. . 1 1 . 1 — .
converges conditionally since Iy > T i > 0 and n1i>moo v 0 = convergence; but

o0 o0 1 1 o0 1 . . .
> |ag] = Z —~and Y - is a divergent p-series
n=1 n=1 \/E 2\/E =t
converges absolutely since ) [a| = > iy and 5 < < which is the nth-term of a converging p-series
n=1 n=1
diverges by the nth-Term Test since _lim ;‘—' =00
n— oo

converges conditionally since - L

1 . _
3 > mrnis > Oand lim m 0 =- convergence; but Z |an|

n=1

o0 (o 0]
1 1 1 . .
=> - 3 diverges because == ;- and >, isadivergent series

n=1 n=1

sin n

converges absolutely because the series Z | | converges by the Direct Comparison Test since |

n=1

sinn| < 1
2 | > a2

=140

diverges by the nth-Term Test since _lim 2* 2
n— oo +n

n+1 n . .
converges absolutely by the Direct Comparison Test since (n-2+)5n+ = 112:51“ <2 (%)n which is the nth term
of a convergent geometric series
converges conditionally since f(x) = & + 1 = f'(x) = — (5 + %) <0 = f(x) is decreasing and hence

o0 [oe]
u, >u,, >0forn 1 andnliﬂmOO (% + %) =0 = convergence; but Zl la,| = El lntn
n= n=
[oe]

(o)
=5 é +> % is the sum of a convergent and divergent series, and hence diverges
n=1

n=1
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26. diverges by the nth-Term Test since _lim_ a, = lim_ 10'/" =1#0
n— oo n— oo

2(2 n+1
27. converges absolutely by the Ratio Test: nlem (“1":) = nlem [%] = % <1
28. converges conditionally since f(x) = xﬁqx = f'(x) = — % < 0 = f(x) is decreasing

= u,>u,,; >0forn 2and nILm = 0 = convergence; but by the Integral Test,

nlnn

b— o0

o0 b 1
f2 X‘]ir’l‘x = lim , (1(112) dx = limOO [In (In x)]lz’ :bleOO [ln(lnb) — In(In 2)] = oo

[o¢] [o0)
= > |ag| = Z —— diverges
n=1 n=1

(tan~! x)2

oo b
29. converges absolutely by the Integral Test since fl (tan'x) (1552) dx = lim [ 5 }

b — oo 1
= lim [t o) — g 1)°) = 3 [(5)" - (5)] = %

In x = f/(X) _ (%) (XflnX)*(lnx)(lfi)

x—Inx (x —1In x)2

30. converges conditionally since f(x) =

1,(1‘17"),1nx+(107x) _ _1-Inx
(x —In x)? T (x—Inx)?

()

Inn
n—Inn

<0 = u, uyr;>0whenn>eand lim
n— oo

= > 1 = s Lo that

n—Inn n n—Inn

=0 = convergence;butn —Inn<n =

> |an] = Z N1 diverges by the Direct Comparison Test

31. diverges by the nth-Term Test since lim - T =1#0

o0 o0
. n. . .
32. converges absolutely since Y |a,| = Y (1) is a convergent geometric series

n=1 n=1

: . . Unsp | aoo™' - nr 100
33. converges absolutely by the Ratio Test: nhmm ( o ) nll>moo orDor ooy = nleDO o =0<1

(o @] [o0)
34. converges absolutely by the Direct Comparison Test since Y, [a,| = Y. 577 and 57 < ¢ Which is the
1

n=1 n=

nth-term of a convergent p-series

35. converges absolutely since Z lan] = >

o0
Z ; is a convergent p-series
n=1 n=1 n=1

0 no, . . .
36. converges conditionally since Z cosnm — M % is the convergent alternating harmonic series, but

n=1 n=1

Mg

(o)
lan| = Z L diverges

n;

1/n
. : n _ 1 (n+ D" _ 1; n —
37. converges absolutely by the Root Test: lim _ v/[a,| =  lim ( r;2+n)" ) lim "H=1<1
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38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Section 10.6 Alternating Series, Absolute and Conditional Convergence

: . : gl | ((n+ DY L @oo_ (n+1) 1
converges absolutely by the Ratio Test: R lgmOO - nleoo @10 " @) —a lgnOO G D — 4 < 1
diverges by the nth-Term Test since lim  |a,| = _lim ) lim @t Dot G
— 1 @+ DH@0+2)---n+@0—1) ; nt1 _
Arnhy%o on-1 >.nhy%o ( 2 ) = #:O

. oo X . + D!+ D13 2n 1)
converges absolutely by the Ratio Test: _lim  |%| = lim @ ()ZI(]“+ 3)!) : (n‘!‘n! 3“)

li (n+1)%3 _ 3

= im sy =1 <

converges conditionally since ~ n - Vi \/Llrtliﬁ = \/er \[ and { \/ﬁ+ \/ﬁ} isa

decreasing sequence of positive terms which converges to 0 = Z \/F

converges; but

+ \f
dolanl = > ﬁ diverges by the Limit Comparison Test (part 1) with \/— ; a divergent p-series:

1
. NETENC T W 1 1
lim = | = lim —— =3
=0 7 nSo Vil ol 1+ +1

diverges by the nth-Term Test since hmDO (\/ n?+n-— n) = hm (\/ n’?+n-— n) . (M)
#

n‘+n+n
= lim ——— = lim L 0
n— oo n?+n-+n n— oo 1+%+1

diverges by the nth-Term Test since  lim (\/n—i- - \/ﬁ) =, lim [(\/n—k — \/—) < niii?)]

- lim " i 1 1
n L /ot a+/n a2, 1+ﬁ+1 27&0

B

converges conditionally since {m} is a decreasing sequence of positive terms converging to 0

. : — _ VN
= Z \/_+ —converges, but lim <ﬁ> W s = o im o f

D=

so that Z o \/— diverges by the Limit Comparison Test with Z 7 which is a divergent p-series

converges absolutely by the Direct Comparison Test since sech (n) = eu% = ez%i: ;< i—?: = e% which is the

nth term of a convergent geometric series

2

eh_e—n

converges absolutely by the Limit Comparison Test (part 1): >_ |a,| = >

n=1 n=1

Apply the Limit Comparison Test with L, the n-th term of a convergent geometric series:

C"’

i - % + % - % + ﬁ - ﬁ + ... = 2::1 é(_nl):l); converges by Alternating Series Test since: u, = 2(n+ y > > 0 for all n
n+2 n+1=20n+2) 2n+1)= 2«“11)“) < 2(n+1) = Upy < up; limu, = hm 2(n1+1) =0.
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48.

49.

51.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Chapter 10 Infinite Sequences and Series

1 1 1
I+i-5-t6tsTx—m st

which is a convergent p-series
lerror| < |[(=1)% ()] = 0.2

](—1)6 OO} =2 % 1071

lerror| <

lerror| < 0.001 = uyy; < 0.001 =

lerror| < 0.001 = up1; < 0.001 =
~ 998.9999 =n 999

lerror| < 0.001 = u,1; < 0.001 =

1
(n+1)+3

(n+ )

1
(n+1)+3y/n+1)

8

=)

o0 [o0)
Zan; converges by the Absolute Convergence Test since Y . |a,| =
n=1 n=1

=
Il

50. error| < [(—1)° (

105) =

52. Jerror| < [(=D*tt =t* < 1
<0.001 = (n+1)>+3 > 1000 = n > —1 + /997 ~ 30.5753 = n

- < 0,001 = (n+1)* +1 > 1000(n + 1) = n > VAN

3<0001:»( +3\/n—|—1) > 1000

:><x/n+1)2+3\/n+ —10>0=/n+ 1=-30 9 n_354 4

lerror| < 0.001 = u,yy < 0.001 =

In(ln(n +3))

31

< 0.001 = In(In(n +3)) > 1000 = n > —3 + e & 5.297 x 10323228467

which is the maximum arbitrary-precision number represented by Mathematica on the particular computer solving this

problem..

a5 < = @n! > 18 =200,000 = n

led o Wonsn 9= 1-1+4-4+5-4+
(@) a, apy fails s1nce% <3

(b) Since Z] anl = 22 [(3)"+(3)'] =

n—=

5= 1— g+ 4 — & + 3 ~ 054030

4 + g ~ 0.367881944

Q=

Z H"+ Z( )" is the sum of two absolutely convergent
n=1

series, we can rearrange the terms of the original series to find its sum:

G+i+t+.)-(G+i+5+...

() )

Moo

O [—=

so=1—3+3—1+... 455 — 355 ~ 06687714032 = sy + 3 - 5; ~ 0.692580927

The unused terms are E (=1 = (=)™ (agy) — @nya) + (D" (@03 — 8pa) + - -

j=n+1

= (=D [(an+1 - an+2) + (an+3 - an+4) +...

] . Each grouped term is positive, so the remainder

has the same sign as (—1)™*', which is the sign of the first unused term.

_|_

_ 1 1 1
Sn7_2 ﬁ+3_4+ n(n+1) Z

0D G-DrG-D G-

k(k+l) Z (
_)+" (n

n
1

_k+)

lanlled

k=1

) which are the first 2n terms

of the first series, hence the two series are the same. Yes, for

m=Y G-e)=0-2)+G-3)+G-D+G-5)+ - +GEH-D+G-57)=1-5x
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64.

65.

66.

67.

68.
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1
n+1

= n&mw Sp = nILmOO ( 1- ) =1 = both series converge to 1. The sum of the first 2n + 1 terms of the first

L. 1 1 . . . T ! .
series is (1 — —5) + =5 = L. Their sumis lim s, = lim_ (1-45) =1L

o0 o0 o0 o0
Theorem 16 states that ) |a,| converges = > a, converges. But this is equivalent to ) a, diverges = > |a,| diverges
n=1 n=1 n=1 n=1

lag +as + ... +ay| < |aj| + |ag] + ... + |an| for all n; then > |a,| converges = > a, converges and these imply that
n=1 n=1

(@) > |an + by converges by the Direct Comparison Test since |a, + b,| < |as| + |by| and hence
n=1

[o¢]

>~ (ap + by) converges absolutely

n=1

(b) > |by| converges = > —b, converges absolutely; since Y a, converges absolutely and

n=1 n=1 n=1
> —b, converges absolutely, we have Y [a, + (—by)] = > (ay — b,) converges absolutely by part (a)
n=1

n=1

n

[e¢] [e¢] o0 (e ¢]
(c) > |an| converges = |k| > |an| = >_|kan| converges = > ka, converges absolutely

n=1 n=1 n=1 n=1

1 o 1 o o 1

Ifa, =b, = (=1 —, then —1)" == converges, but ab, = < diverges

n=bn = (—1) VA n;( ) Jn g n; nbn n; 3 g
sSi=—3.%=—3+1=73,

_ 1 1_1_1_ 1 _ 1 _ 1 _ 1 _ 1 _ 1 _ 1 _
Ss=—3tl-g—f 8§ 10 m 1u 16 18 w2~ 0509,

S4 = 83 + % ~ —0.1766,

S = S5 + % ~ —0.312,

-4+ _ 1 _1_ 1 _ 1 _ 1 _ 1 1 1 _ 1 & _
§7 =956 726 " 28 T 50 52 54 56 38 60 62 64 66 0.51106

0.4
0.2
2 4 6 8
-0.2 *
L
-0.4
o - . y =1/2

(a) Since ) |an| converges, say to M, for € > 0 there is an integer N; such that

N;—1
> Jan| — M’ <3
n=1

N;—1 N;—1 00 00 00
S 13 lanl = | X Janl + 2 Ja] [ <5 & [ lal[<§ & > || <§. Also, ) a,
n=1 n=1 n=N; n=N; n=N;

converges to L. < for € > 0 there is an integer N2 (which we can choose greater than or equal to N;) such
[o 0]
that |sn, — L| < §. Therefore, > |a,| < §and [sy, —L| < §.
n=N;

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
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k

> || =M

n=1

<€

(b) The series ) . |a,| converges absolutely, say to M. Thus, there exists Ny such that

n=1
whenever k > N;. Now all of the terms in the sequence {|b,|} appear in {|a,|}. Sum together all of the

terms in {|b,|}, in order, until you include all of the terms {|a,|} ", and let N, be the largest index in the

Z [ba| =M

n=1

n=1’

sum Z |ba| so obtained. Then
n=1

< easwell = Z\bn| converges to M.
n=1

10.7 POWER SERIES

Un+1

—1 < x < 1; when x = —1 we have ) (—1)", a divergent

n=1

1. lim
n— oo

<l = lim
n— oo

o0
series; when x = 1 we have > 1, a divergent series

n=1
(a) the radius is 1; the interval of convergence is —1 < x < 1
(b) the interval of absolute convergence is —1 < x < 1
(c) there are no values for which the series converges conditionally

. . n+1
2. lim Rt <1 = lim (’Ex“f;)n <1l = |x+ 5| <1 = —6 < x < —4; when x = —6 we have
(—1) a divergent series; when x = —4 we have 1, a divergent series
g g
n=1 n=1

(a) the radius is 1; the interval of convergence is —6 < x < —4
(b) the interval of absolute convergence is —6 < x < —4
(c) there are no values for which the series converges conditionally

(@x+ D!
@x+ 1y

<l = [4x+1<l = -1<4x+1<1 é—l<x<0;whenx:—%we

l-anrl

3. lim
n— oo

have Z D= =3 (=) = Z 1", a divergent series; when x = 0 we have Z (=DM = > (=D,
n=1 n=1 n=1

n=1

<1 = lim
n — 0o

a divergent series
(a) the radius is }1; the interval of convergence is — % <x<0
(b) the interval of absolute convergence is — % <x<0

(c) there are no values for which the series converges conditionally

(3X _ 2)n+l

un+l .
n+1 Bx—2)n

4. lim )<l = 3x—-2|<1

n— oo

n+1

<1 = lim S| <1 = [3x—2| lim (-2
n— oo )

= —-1<3x-2<1 = % <x < l;whenx = % we have Z % which is the alternating harmonic series and is

n=1

o0
conditionally convergent; when x = 1 we have ) % , the divergent harmonic series

n=1

(a) the radius is %; the interval of convergence is % <x<1

(b) the interval of absolute convergence is % <x<1

(c) the series converges conditionally at x = %

50 lim_ | <1 = dim |2 % <1 = Ml = x-2/<10 = —10<x-2< 10
n — oo — 00 (x 2) 10
= —8 < x < 12; when x = —8 we have Z (—1)", a divergent series; when x = 12 we have Zl, a divergent series
n=1 n=1

(a) the radius is 10; the interval of convergence is —8 < x < 12
(b) the interval of absolute convergence is —8 < x < 12
(c) there are no values for which the series converges conditionally
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@x)™!
@x"

lim |t
n — oo

<l = lim
n— oo

<l = lim [2x[<1 = [2x[<1 = —3 <x < §;whenx = — 1 wehave
n— oo

o0

o0
> (—1)", a divergent series; when x = 3 we have }_ 1, a divergent series
n=1 n= 1

(a) the radius i 1s ; the interval of convergence is— 3 < X < 5
(b) the interval of absolute convergence is — 5 <x < 5

(c) there are no values for which the series converges conditionally

: Unti : (n+Dx™ (4 2) (n+ D +2)
Jim [ <1 = lim  |S g - S <= X[ lim) SESGT <L = X[ <
= —1 < x < 1;when x = —1 we have Z (=" =, adivergent series by the nth-term Test; when x = 1 we

n=1

(e ¢]
have ) A5, a divergent series

n=1
(a) the radius is 1; the interval of convergence is —1 < x < 1
(b) the interval of absolute convergence is —1 < x < 1
(c) there are no values for which the series converges conditionally

Jim B <1 = lim (X;rj)lm ot <1 = x+2[ lim (;47) <1 = [x+2[<1
= —-1<x+2<1 = -3<x<-1;whenx= -3 wehavez , a divergent series; when x = —1 we have

n=1
0

1 .
> (T) a convergent series

n=1

(a) the radius is 1; the interval of convergence is —3 < x < —1
(b) the interval of absolute convergence is —3 < x < —1

(c) the series converges conditionally at x = —1

un+l

lim
n—oo

. X+ i ny/n3" Ix| n
<l = leOO PRIV T | <1 = 5 hmDO — nleoo =41) <1

= I’;—‘ (H() <1 = |x] <3 = —3 <x < 3;whenx = —3 we have Z (;3—1/; an absolutely convergent series;
n=1

when x = 3 we have Z 3/2, a convergent p-series
n=1

(a) the radius is 3; the interval of convergence is —3 < x <3
(b) the interval of absolute convergence is —3 < x <3
(c) there are no values for which the series converges conditionally

lim Un+1
n-—

. (X—])'H] \/_
<1 =  lim_ T ® 1)n<1:>|x—1| 1l>moon+1<]:>|x_1|<l

Up

= —1<x—-1<1 = 0<x<2;whenx =0 we have Z /, , a conditionally convergent series; when x = 2

n=1

we have Z 1 5, a divergent series

(a) the radius is 1; the interval of convergence is 0 < x < 2
(b) the interval of absolute convergence is 0 < x < 2
(c) the series converges conditionally at x = 0

n+1

un+l X .
(n+ 1! X“

<1 = lim

n— oo

lim
n— oo

<1 = [|x| lim_ (755) < 1forall x

(a) the radlus is oo; the series converges for all x
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(b) the series converges absolutely for all x
(c) there are no values for which the series converges conditionally

Un+l

. 3n+lxn+l 1
<1 = lim |57 cal <l = 3|x|  lim (n+1) < 1 for all x

Up

12. lim
n — 0o

(a) the radius is co; the series converges for all x
(b) the series converges absolutely for all x
(c) there are no values for which the series converges conditionally

: un+1 : 4rly2nt2 2 1 dn \ _ 442 2 1
13, lim <1l = lim %25 sl <1 = % lim ((F) =47 <1=x><;
[o0)
1 1. _ _1 41y _ 1 : g _ 1
= —5 <x < 3;whenx = —3 we have § ;(75) = > -, adivergent p-series; when x = 5 we have

n=1 n=1

e 40 71\2n e 1 . .
> (3)7 =3 I, adivergent p-series
n=1 n=1

(a) the radius is !; the interval of convergence is —% <x < %
(b) the interval of absolute convergence is —% <X < %

(c) there are no values for which the series converges conditionally
(x— D! n%3"

. 3 n? _ 1
<1l = leoo W-(Xfl)“ <1$|X—1|nll>moo(m)—§|x—l|<l

un+1

14. lim
n— oo

3

o0 o0 n .
= —2 < x < 4; when x = —2 we have ) A = > (;? , an absolutely convergent series; when x = 4 we have
n=1 n=1

o0
>, 19 )3 niz, an absolutely convergent series.

n=1 n

(a) the radius is 3; the interval of convergence is —2 < x < 4

gk

(b) the interval of absolute convergence is —2 < x < 4
(c) there are no values for which the series converges conditionally

: un+l x"! . Vn?+3 n2+3
15, lim <1 = lim_ \/(n+l)2+3 | <1 = X[/, im s <1 = [x[<1
= —1 < x < 1;when x = —1 we have Z \;% , a conditionally convergent series; when x = 1 we have
o0
S —+—, adivergent series
n*+3

n=1
(a) the radius is 1; the interval of convergence is —1 < x < 1
(b) the interval of absolute convergence is —1 < x < 1

(c) the series converges conditionally at x = —1
: Untl X! . V/n2+3 n2+3
16. lim |5 <1 = lim_ \/(n+l)2+3 | <1 = X[/, im s <1 = [x[<1

= —1 <x < 1;whenx = —1 we have Z \/T a divergent series; when x = 1 we have Z \};2? ,

n=1 n=1
a conditionally convergent series
(a) the radius is 1; the interval of convergenceis —1 < x < 1
(b) the interval of absolute convergence is —1 < x < 1
(c) the series converges conditionally at x = 1
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l-1n+1

n+1 n .
<1 = lim [®E oy = BEL gim (aEl) <1 = BEL o

17. hm T

= [x+3]<5 = -5<x4+3<5=> -8<x<2; Whenx—78wehavez "( S — S (—1)"n, a divergent
n=1

n=1

series; when x = 2 we have Z “Si,, = Z n, a divergent series

n=1 n=1
(a) the radius is 5; the interval of convergence is —8 < x < 2
(b) the interval of absolute convergence is —8 < x < 2
(c) there are no values for which the series converges conditionally

: un | : (n+ Dx"+! 4" m2+1) x| (n+1D(’+1)
18 lim |50 <1 = im \memmey s —we | <1 = 7 ,lm W‘ <l = [x[<4
) _ o~ n(=1)" . I _ o~ _n

= —4 < x < 4;when x = —4 we have nz_:l T conditionally convergent series; when x = 4 we have nz_:l T

a divergent series

(a) the radius is 4; the interval of convergence is —4 < x < 4

(b) the interval of absolute convergence is —4 < x < 4

(c) the series converges conditionally at x = —4

- Unit - Vot lxm o g IxI i n+1 xI
19. lim e < 1= lim | Y- S <D= 5yl () <1 = 5 <l = X <3
oo o0
= —3 < x < 3; when x = —3 we have ) (—1)"\/5, a divergent series; when x = 3 we have ) \/ﬁ, a divergent series
n=1 n=1

(a) the radius is 3; the interval of convergence is —3 < x < 3

(b) the interval of absolute convergence is —3 < x < 3

(c) there are no values for which the series converges conditionally

+1
: unH . n+1 . n+1
20 tim [ <1 = tim [SAEEST g o x| lim (S <1
Vi
= |2x + 5] (‘ﬁx% <1l =]2x+5|<1 = —-1<2x+5<1 = -3 <x< —2;whenx = —3 we have

o0 o0
Zl =D \"/ﬁ, a divergent series since , leoo \’/ﬁ = 1; when x = —2 we have ) \'/ﬁ, a divergent series
=

n=1
(a) the radius is %; the interval of convergence is —3 < x < —2
(b) the interval of absolute convergence is —3 < x < —2
(c) there are no values for which the series converges conditionally

21. First, rewrite the series as > (2 + (=D™)(x+ D™ ' = S 2(x + )" + 3 (=1)"(x + 1)™". For the series
n=1

n=1 n=1

un+l

> n—1, .
nX::l 2(x+1)" 7 lim

<1 = lim ’2<*+;3",‘<1;»|x+1|ngmm 1 =|x+1]< 1= —2 < x < 0; For the

n—o00 |2(x+1)"
seriesz(—1)“(x+1)“‘1:n1Lmoo il <] = lim ]% <1=|x+1] lim 1=[x+1]<1

n=1

= —2 <x <0;whenx = —2 we have }_ (2+ (—1)“)(—1)“_1, a divergent series; when x = 0 we have
n=1
> (24 (=1)"), a divergent series

n=1

(a) the radius is 1; the interval of convergence is —2 < x < 0

(b) the interval of absolute convergence is —2 < x < 0

(c) there are no values for which the series converges conditionally
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(,1)n+132n+2<x _ 2)n+1 ) 3n
3(n+1) (=32 (x —2)"

22. lim
n— oo

2| lim =9x—-2| <1

— 00 n+l
17 17 (=3 1)"32“ 1\ _ 1 : e 19
= 7 <x < 2;whenx =4 we have Zl (-3) = 21 35> @ divergent series; when x = - we have
=

[o0]

n32n &0
Z —U37 (1)" = 3° % a conditionally convergent series.

= n=1

(a) the radius is L. the interval of convergence is % <x< 19—9

(b) the interval of absolute convergence is § < x <

(c) the series converges conditionally at x = %

Un+1

23. lim
n— oo

<l = lim
n— oo

Lnxn m 1y
M <1 = [x| (7‘ﬂ(l+l)><1 = X[ (§) <1 = k<1

(1+%) X lim (1+%)"

= —1 <x < 1;whenx = —1 we have }_ (—1)" (1 + %)n, a divergent series by the nth-Term Test since

n=1

lim (1+ %)n = e # 0; when x = 1 we have ; (1+ %)n, a divergent series

(a) the radius is 1; the interval of convergence is —1 < x < 1
(b) the interval of absolute convergence is —1 < x < 1
(c) there are no values for which the series converges conditionally

(1)

1 Dx! .
Inn 4 Dx™ 6 ‘<1 = [x| lim_ (

X" Inn

un+]

24. lim
n— oo

<1 = lim <1 = [x| lim )<l = x <1
n— oo n— oo

n+

= —1 <x < 1; when x = —1 we have Z (=1)" In n, a divergent series by the nth-Term Test since hm Inn # 0;

n=1

[o¢]
when x = 1 we have ) In n, a divergent series

n=1
(a) the radius is 1; the interval of convergence is —1 < x < 1
(b) the interval of absolute convergence is —1 < x < 1
(c) there are no values for which the series converges conditionally

(n+ 1)n+lxn+1
nnxn

un+l

25. lim
n— oo

<1 = lim
n— oo

<1 = |x| (nlem (1+ %)n) (nllmoo (n+ 1)) <1
= e x| nleoo (n+1) <1 = only x = 0 satisfies this inequality

(a) the radius is O; the series converges only for x = 0

(b) the series converges absolutely only for x = 0

(c) there are no values for which the series converges conditionally

u"+1 (n+ 1! (x —4)"*!

26.  lim =3 <1 = [x—4| lim_ (n+1) <1 = onlyx = 4 satisfies this inequality

<1 = lim
n— oo
(a) the radlus is 0; the series converges only for x = 4

(b) the series converges absolutely only for x = 4
(c) there are no values for which the series converges conditionally

. Ungl . (x 42! . _n2" [x+2| . |X+2|
27. lim =2 <1 = lim | ooy g | < 1 = Sy lim () <1 = <l = x+2|<2
0 n+1
= —2<x+2<2 = —4<x<0;when x = —4 we have Z_Tl,adivergentseries;whenx:Owehave Z%,
n=1 n=1

the alternating harmonic series which converges conditionally
(a) the radius is 2; the interval of convergence is —4 < x <0
(b) the interval of absolute convergence is —4 < x < 0

(c) the series converges conditionally at x = 0
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30.

31.

32.
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(72)n+](n+2)(x _ 1)n+]
(=2)"(n+ DHx— D"

l-1n+1

lim
n— oo

<1 = lim <l =2x-1] lim (M) <1 =2x-1]<1
n— oo n— oo +1

n

o0
= ‘X71‘<% = ,%<X,1<% = %<X<%;whenx:%WehaveZ(nJr1),adivergentseries;whenx:3

2
n=1

o0
we have ) (—1)"(n + 1), a divergent series

n=1
(a) the radius is 1; the interval of convergence is § < x < 3
(b) the interval of absolute convergence is % <x< %

(c) there are no values for which the series converges conditionally

mi) <] = hmOo

. 2
X 2-"(1““)‘<1:>|x|(11m “)(11 lnn)<1

nleoo (n+ 1D (In(n+1)) n—oo n+l n—oo In(n+1)

0o\ 2
= [x|(1) { lim (’1’) <1 = x| ( lim ot <1 = x| <1 = —1 <x<1;whenx = —1 we have
n=o0 () n—=oo n

2 ne which converges

n(ln n)? n(l

> (D% which converges absolutely; when x = 1 we have Z

(a) the radius is 1; the interval of convergenceis —1 < x <1
(b) the interval of absolute convergence is —1 < x < 1
(c) there are no values for which the series converges conditionally

un+]

Jlim <1l = lim X SO o = x| ( lim - )( lim lnA) <1

50 (n+1)1n(n+1) xn n—soo ntl n—oo In(n+1)

D"

Ty » @ convergent alternating series;

= x[(DD) <1 = |x]<1 = —-1<x<Il;whenx =—1 wehavez
n=2

when x = 1 we have ). —L— which diverges by Exercise 38, Section 9.3
n=2

(a) the radius is 1; the interval of convergence is —1 < x < 1
(b) the interval of absolute convergence is —1 < x < 1

(c) the series converges conditionally at x = —1
lim %) <1 = lim |92 02 o o @x — 52 (i n 3/2<1§(4 —52 <1
n e | n e | Tar T G5 X n M a3 X
) 2n+1 e
= [4x-5|<1 = -1<4x-5<1 = 1<x< %;Whenx:lwehavez (7n1§/2+ => n_s/lq which is
n=1 n=I
absolutely convergent; when x = 5 we have Z (1) , a convergent p-series

n=1

(a) the radius is %; the interval of convergence is 1 < x < %
(b) the interval of absolute convergence is 1 < x < %

(c) there are no values for which the series converges conditionally

: u, : Gx+ D" 2n42 : 2042
Jim B <1 = dim | - | < 1 = [Bx 4 hmoo (22 <1 = 3x+1|<1
= -1 <3x+1<1 = -3 < x < 0;whenx = — % We have Z +1 , a conditionally convergent series;

(1)n+]
2n+1

when x = 0 we have >

n=1

_ 1 . .
= Zl anrT » @ divergent series
b

(a) the radius is %; the interval of convergence is — % <x<0
(b) the interval of absolute convergence is — % <x<0

(c) the series converges conditionally at x = — %
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Xt 2:46:--(2n)

l-1n+1 .
2:4.6---(2n)(2(n+ 1)) X"

33. lim
n— oo

<1=  lim_ <l = |x|nliﬂmoo(2n+2

) < 1 for all x
(a) the radlus is 00; the series converges for all x
(b) the series converges absolutely for all x

(c) there are no values for which the series converges conditionally

3.57---(2n 4+ 1)(2(n + 1) 4 1)x"+? A n22"
(n 4 1)%20+1 35720 + Dx T

n H2
(22(n_:31))2) <1 = only

un+l

34, lim
n— oo

<1l=  lim_ <1:>|x\n1me(
x=0 satlsfles this inequality

(a) the radius is O; the series converges only for x = 0

(b) the series converges absolutely only for x = 0

(c) there are no values for which the series converges conditionally

35. For the series > %x“,recall 142+ ---4+n= w and 12422+ .- 4+n2 = w so that we can
n=1

3xn+! o+ 1)
2(n+1)+1) 3xn

) x"; then lim |%tL <1
n— oo Up

. . 00 n(n+ 1) 0
rewrite the series as ) | warim => (
6

n=1 n=1

<1= lim ‘
n— oo

(2n+1
2n+ 3)

= [x| lim_ ‘ ‘ <l=[x|<l=-1<x<Il;whenx=—1 wehavez (27)(—1)", a conditionally

convergent series; when x = 1 we have Z (

n=1

(a) the radius is 1; the interval of convergenceis —1 < x < 1

5> )» a divergent series.

(b) the interval of absolute convergence is —1 < x < 1
(c) the series converges conditionally at x = — 1

e _ 2\ _ _ WVntl-yn Vnti+ym 1
36. Forthesenesnz:I (x/nJr n)(x 3)", note that \/n+ 1 — \/n = ] T \/m+\/ﬁs0thatwe

(x— 3>“+‘ V1 +\/—

n+2+ (x-3)"

can rewrite the series as Z \/_+ 7 ; then Ime

mw

=[x — 3| lim
— 00 n+2+

-<I=[x=3|<1=2<x<4 Whenx_ZwehaveZ\/— \/_aconditionally

. ] . .
convergent series; when x = 4 we have > | —————+, a divergent series;
’ r; /n+l+\/;’ 2

(a) the radius is 1; the interval of convergence is 2 < x < 4
(b) the interval of absolute convergence is 2 < x < 4
(c) the series converges conditionally at x = 2

. Uy (n+ Dx™! 3:6:9--+(3n) \ _
37. lim |5 <1= lim_ ‘3_6‘9“,(311)(3(”1)) - ‘—‘ <l=8<1=x|<3=R=3
. uﬁ (2:46--2n)(2(n+1))*x™! (2583 -1))’ (2n+2)° 4[x|
38. lim, |5 <1=lim ’(2-5-8.'-(31171)(3( TD-D)  (246-(2n)x n o ’(3n+2)2 g <1

é|x|<1:>R:—

((n+ D! 2"<2n>
27+1(2(n+1))! (n)

(n+1)

: Un+1 —_—
39. n 1l>moo u, 2(2n+2)(2n+1

< 1= lim
n— 0o

< 1= x| lim_ ‘ ‘<1:>‘X‘<1:>|x|<8:>R—8

2
40. lim  /u, <1= lim v (n_‘;])nxn<1¢|X|nli>moC (nil)n<1:>|x|e’1<1$|x|<e:>R:e
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42.
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lim |2 <1 = lim |20 o1 = |x| lim 3<1 = [x|<! = —l<x<liatx=—1wehave
n—o00 | U n — 00 3"x n = 0o 3 3 3 3
X, 1\n s n . . 1 e 1\n e . . . s
> 3" (—3) = > (—1)", which diverges; at x = § we have >~ 3" (3)" = 1, which diverges. The series ) 3" x"
n=0 . n=0 n=0 n=0 n=0
[o 0]
= Z% (3x)" is a convergent geometric series when —} < x < 1 and the sum is 5.
=
X _ n+1 .
lim | <1= lim | | <1=]et—4] lim I1<1l=|e*—4/<1=>3<e<5=m3<x<n5;
n-— oo uy n— 0o (ex—4) n-= oo
0 In3 n e n . . e In5 n 0 .
atx =In3 wehave > (e"? —4)" = 3°(—1)", which diverges; at x = In5 we have }_ (e"® —4)" = Y"1, which
n=0 n=0 n=0 n=0

o0
diverges. The series Y (e* — 4)" is a convergent geometric series when In3 < x < In 5 and the sum is m = S—I_e"

n=0

; Uni : (x =1+ 4" x=1D" 1 2
nll)moo ﬁ <1l = nleoo T'(X—I)Z“ <1l = Tnleoo |1|<1 = (X—l) <4 = |X—1|<2

o] n 0 o] . .
= -2<x—-1<2 = —-1<x<3;atx=—1wehave ) (751)2 = > % = 1, which diverges; at x = 3
n=0 n=0 n=0

X o X < . . . : 3
we have > %17 => i—n = Y 1, adivergent series; the interval of convergence is —1 < x < 3; the series
n=0 n=0 n=0

an 2

n=0 n=0

O =1 & 2\" . . . .
3 G-DF > (("‘ ') ) is a convergent geometric series when —1 < x < 3 and the sum is

1 _ 1 _ 4 _ 4
17(,‘,1)2 - [4—()(4—1)2} T 4—-x242x—1 ~ 342x—x2
2
. Upig : (x+ DH*+2 9" x+D? g 2
44, nleoo u_: <1l = nleoo o T G m <1l = Tnleoo |1|<1 = x+1)<9 = |X+1|<3
= —3<x+1<3 = —4<x<2;whenx =—4wehave ) (_93“)'“ = > 1 which diverges; at x = 2 we have
n=0 n=0
o0 n oo
> 39—,, = > 1 which also diverges; the interval of convergence is —4 < x < 2; the series
n=0 n=0
> x4+ D™ >, 2\ 1. . . .
Y iR =3 ((%) ) is a convergent geometric series when —4 < x < 2 and the sum is
n=0 n=0
1 _ 1 _ 9 _ 9
2 —x+12] T 9—x2—2x—1 " 8—-2x—x2
1_(x-§l) [9 <9+1>}
(Vx-2" 2
i Uil i _ . ! — — —
45. lim |2 <1 = lim_ ’ - (ﬁz),.’<1 = |V/x-2<2= 2</x-2<2=0<,/x<4
o0 o0
= 0 < x < 16; when x = 0 we have ) (—1)", a divergent series; when x = 16 we have >_ (1)", a divergent
n=0 n=0
. . . Lo (Vx=2)\". . .
series; the interval of convergence is 0 < x < 16; the series ) ( 3 ) is a convergent geometric series when
n=0
: . 1 _ 1 _ 2
0 < x < 16 and its sum is 17<ﬁ—2> = <ziﬁ+2> =ThA
2 2
n+1
46. 1lim_ %1 <1 = lim W70 1 = jnx|<1 = —1<Inx<1 = e <x<e; whenx=ecorewe
n—o00 | U n—oo | (Inx)

00

obtain the series >~ 1" and Y (—1)" which both diverge; the interval of convergenceise™ < x < e; Y. (Inx)" = lfm

n=0 n=0 n=0

whene ! <x<e
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47. lim &)
n— oo

Un+1
Up

=)' <1 = Jdim 1] <1 = Sl s 22

N 1
<1 = nu}moo ’(x.;_1>n+ . (L)n

= x| < V2 = —V/2<x<+/2;atx = + /2 wehave >~ (I)" which diverges; the interval of convergence is

n=0

0 n
—\/5 <x < \/5; the series ("23—“) is a convergent geometric series when —\/5 <x < \/5 and its sum is
n=0

<x27 1)n+] 2n

l—‘n+1

48'nlem \/§<X<\/§;Whenx::|: 3 we

<l = lim
n— oo

o] n
have 2% 1", a divergent series; the interval of convergence is f\/g <x < \/§ ; the series Z% <"22’ 1) isa
n=| n=

convergent geometric series when f\/g <x< \/5 and its sum is . (i?q) = (2(1_)1)> = 3_2—)(2

2

)

. (x— 3)n+l on
49 n ll)moo on+l1 ( g)n

<l = x=3]<2=1<x<5 whenx—lwehavez ()™ which diverges;

n=1

when x = 5 we have ) (—1)" which also diverges; the interval of convergence is 1 < x < 5; the sum of this

n=1

x—=3
2

convergent geometric series is ﬁ = % Iffx)=1-— (X -3)+ %(X =32 +... + (— —) x=3)"+

K =—5+3x=3)+...+ (- —) n(x — 3)"~! 4 ... is convergent when 1 < x < 5, and diverges

when x = 1 or 5. The sum for f'(x) i is ¢ the derivative of %

1)’ )

50. Hf) =1— L(x—3)+ Lx =32+ ... + (- 1) x =3+ [t dx
:x—@—i—(xg) +.o o+ (= (x;j;"“ +... Atletheserieszn+1 diverges; atx = 5

e n . . .
the series Z (;212 converges. Therefore the interval of convergence is 1 < x < 5 and the sum is

2In|x — 1|+ @B —1n4), smcef ;dx =2In|x — 1|+ C, where C = 3 — In 4 when x = 3.

51. (a) leferentlate the series for sin x to getcos x = 1 — —, Ssi, Sy 99", — 1{’1‘!10 +...
=1- 5 + 2 E . S Tl 1(1)0, + ... . The series converges for all values of x since
. R Y T 1 _
Illi>m00 2n+2)! - o =X nli)moo (m) = 0 < 1 fOr all X.
3¢3 5 -J TX'T Qx{) llxll X X XT X xll
(b) sin2x =2x— BC + 2° _ 2 4 20 20 4 g B804 320 180 4 SI2¢ 208
(¢) 2sinxcosx=2[0-D+©O-0+1-Dx+(0-F+1-0+0-1)x*+(0-0—1-5+0-0—1- 3L)

+(0-F+1-0-0-2-0-540-1)x*+(0-04+1-L40-0+3-L4+0-0+1-24)x°

+(0~é+1-0+0-%—FO'%-I-O-%4—0-%4—0-1))(6-1-...]—Z[X—%-I—ﬁ—...}
343 545 TT 949 11,11
:ZX_23_)!( 25_)5_27_}'( 29_)!(_211)(!
52. (@) 4(e )—l—i—%’,‘—i—z", +4Af, —i—%—l— .zl+x+§—f—|-§—?-i-2—?+...:ex;thusthederivativeofe"ise"itself

(b) fe dx =e*+C=x+% —1—3—3—|—2—1+’5‘5, + ... 4+ C, which is the general antiderivative of e*

© ele—x+§—§+m—’5‘—i+...;e’*-e*:1-1+(1-1—1-1)x+( B R R VS
+(-L-t- b+ b5+ (-5 -1 5+ L -4+ L)X
+ (=149 35— 35+ - D)X +...=14+04+0+0+0+0+...

&2
Bl
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53. (a) 1n\secx|+C:ftanxdx:f<x+ +—+%+g§—§5+ )dx

X oxt k8 17, 311 e _ X xt xS I 31k
2—|—12—|—45—|—2520+14,175+...+C,x70:>Cf0:>ln\secx|f2—1—12—1—454—2520—1—14,175—1—...,

converges when — 7 < x < §

(b) sec?x = 400 — d( +E X 1371"5 + 8= ) 2"44— 7 4 @2¢ 1 .., converges
when — 5 <x < §
(c) sec?x = (sec x)(sec X) = ( e )(1 TER QEE S )
1 6l . 5 . 5 . 6
=1+ (G+)+(Grita) X+ (Fntatatm Tt
=144 B 00, _roxcl

54. (a) ln\secx+tanx|+C:fsecxdx:f(l—l—x;—i-%—i—%—f—...)dx

3 5 7 9
:x+%+§—4+g(l)—i‘0+722775’;6+... +C;x=0 = C=0 = In|sec x + tan x|

:x+%+§—z+%+72272’;6+ , converges when — 7 < x < %

(b) secx tanx = 4N = 4 (1+ ey ):x+5?"3—|—%’§+217070"87+...,converges
when — 5 <x < §

(c) (secx)(tanx)z( + % —1—5X +612’B+ )( +X3—3+21—X5+137f‘57+...)
_ 1,1 5 7 001 405 4 61\ T _ 5% | 6lx5 | 277x
—X+(§+§)X +(E+g+ﬂ)x +(m+ﬁ+ﬁ+ﬁ)x +.o =X+ %+ 50 T Joos T >
—5<x<3

55. (a) Iff(x) = Zan“thenf )(x) =Y n(n — 1)(n —2)---(n — (k — 1)) a,x" ¥ and £ (0) = k!ay
n=0 n=k

®) . .. K ..
= ax = % ; likewise if f(x) = Z b,x", then by = % = ax = by for every nonnegative integer k
n=0

(b) Iff(x) = > ay,x" = 0 for all x, then f ®(x) =0forall x = from part (a) that ay = 0O for every nonnegative integer k
=0

10.8 TAYLOR AND MACLAURIN SERIES

1. f(x) = e, f'(x) = 2%, f"(x) = 4e>*, f"(x) = 8e**; f(0) = 2O =1, f'(0) = 2, f"(0) = 4, {”(0) = 8 = Py(x) = 1,
Pi(x) =1+2x, Po(x) = 1 + x4+ 2x2, P3(x) = 1 + x + 2x% + ;—‘x3

2. f(x) = sinx, f'(x) = cosx, f""(x) = —sinx, f”’(x) = —cosx; f(0) = sin0 = 0, f'(0) = 1, f”(0) = 0, f”(0) = —
= Py(x) =0, P1(x) = X, Py(x) =X, P3(x) = x — %XS

3. f)=Inx,f'x)=1,f"x) =5, "x)=3:f()=In1=0,'(1) = L, f'(1) = -1, (1) =2 = Py(x) =0,
Pix)=x—1),Pox)=x—D—-3x—DALPsx)=x—D—sx—-1D?+ix-1°

4. f{x)=In(1 +x),{’'x) =

=10 L0 = 1+ 00 =21+ 073 f(0) =In 1 =0,

f(0) = L =1, £7(0) = —(1)"2 = 1, £(0) = 2(1)® = 2 = Py(x) = 0, Py(x) = x, Pa(x) = x — £, P3(x) = x — & + &
5. f00 =L =x"1f(x) = —x 2 f"(x) = 2x %, f”’(x) = x4 =L, Q)= L' =1 ") =-2

Py = 1 Pl(x)—é— Lx—2), Pa) = 3 Lx—2)+ -2

Ps(x) =1 —1(x—2)+ g (x —2)* - (X—Z)3
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6.

10.

12.

13.

14.

15.

16.

17.

Chapter 10 Infinite Sequences and Series

fx) = x +2)7 /(0 = ~x +2)7%, (%) = 2(x +2) 7%, (%) = —6(x +2)7%; f(0) Q) =3.f0=-27"
=10 =200 =1f"0) =62 =-} = P =1.PI0)=1 -2 P =1-2+%,

P =3+ %%

f(x) = sin x, f'(x) = cos x, f(x) = —sin x, f”/(x) = — cos X;f(%) =sin § = g, f’ (%) =cos j = # ,
P1(2) = —sin T = — Y2 f7(T) = —cos T = — L2 = Py= Y2 Py(x)= L2 4 L2 (x—1I),
P = G+ (= §) = (= D) B0 = (- ) - - ) - - )

f(x) = tan x, f'(x) = sec? x, f(x) = 2sec? x tan x, f/(x) = 2sec* x + 4sec? x tan® x; f(%) = tan
( ) sec (—) =2 f”(“) = 2sec? ( )tan( )—4 f”’( ):2sec (Z)—|—4sec (%) tan2(%) 16 = Py(x) =1,
Pix)=1+2(x—%),Pax)=1+2(x —§)+2(X—§) Psx)=1+2(x—%) +2 T

fx) = /X = x12 /0 = () x V2, 70 = (= 1) x 72 170 = (3) x 5% f4) = V4 =2,
)= (5412 =1"@= (-4 =-L "= ()47 =% = P =2PIx) =2+ (x—4),

Pox) =2+ ;(x =4 — g x4 P30 =2+ 1 (x—4) - H x4+ 55 x4

f00) = (1=, (0 = =3 (1= )72 700 = = § (1 =072 £7(0) = =31 =072 £(0) = ()2 = 1,
PO =—3(1)72 =3, f"0) = = 3 (D72 = = §  {7(0) = =3 () = —g = Py =1,
Pix)=1-2xPx)=1—-3x—§x,Ps(x)=1—1x—§x?— &x3

) =e N X)) = —e XL ) =e L, ' (x) = —e* = ... f0x) = (=) e f(0) =@ =1, (0) = —1,

') =1, £(0) = —1, ... ,fO0) = (- = e*=1—x+ x> — I’ +

f(x) = xe*, f'(x) = xe* 4 e, f"(x) = xe* + 2e*, f/(x) = xe* + 3e* = ... f¥(x) = xe* 4+ ke*; f(0) = (0)e® =0,
f'(0)=1L{"0) =2, f7(0) =3, ... ,fY0)=k= x+x*+ 1> +... =3 ( 1

n=0

fX)=01+x)"! = ffX)=—-1+x)2"x)=201+x)3"x)=-311+x)"* = ... fPx)
— (=DK1 4+ )75 £(0) = 1, £1(0) = —1, £7(0) = 2, £7(0) = —31, ..., £9(0) = (—1)*k!

= 1—x+x2-x3+... =Y (—x)"=Y (-)x"
n=0
f(x) = 255 = F(x) = g2 F/00 = 61— %)%, (0 = 1801 — x4 = ... £9(x) = 3(k)(1 — %)™ £(0) = 2,
£/(0) = 3, £(0) = 6, f/(0) = 18, ... ,£®(0) = 3(k!) = 2+ 3x +3x2 + 35 +... =2+ 3x"
n=1
n 2n+1 . 0 1) 2n+1 0 _1\n22n+1,2n+1 3 3 5
smxfz(@lr)lﬂ), :>51n3x:;)%:2%:3x—3 —|—35,

1)n 2n+1 1)n 2n+1 3 5

(Dt (G ) =x X X
sin x = Z o = sin § Z GTE Z%) P — 2~ P31 T wa T
n

1 2 4 6 . . . .
7cos(—x)=Tcosx =7 Z ((231)’,‘ =7 4 x_ % + ..., since the cosine is an even function

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.



18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Section 10.8 Taylor and Maclaurin Series

o0 o0

_ (=% _ (=D 5m2x? 5mixt 5m9x°

CosSX = ! = S5cosmx=35) W—S— 5+ = e
n=0

coshx:e‘gex:%{(1+x2+;—f+§—f+3—ﬁ+...)+(1—x+;—f—"—'{+*—,—...)}=1+§+§+§+...

. i o
- 2n)!
= (2n)

sinhx:e‘f*:%[(1+x+g—f+§—f+3—’§+...)—(1—x+;—f—"—;+*—!—...)}=x+§—f+§—f+g—ﬁ,+...

2n+l

Z [l

fx) =x? —2x3 = 5x +4 = f/(x) = 4x® — 6x2 — 5, " (x) = 12x% — 12x, {"”(x) = 24x — 12, f{¥(x) = 24
= fMWx)=0ifn 5;f(0) =4, (0) = —5,{"(0) = 0, {(0) = —12, f{#(0) = 24, fW(0) = 0ifn 5
:>x4—2x3—5x+4:4—5x— x3—|—24x4—x4 2x3 — S5x + 4

f(x) = X = f/(x) = 22 f/(x) = o 700 = 55 = ™ (x) = g‘l,,f(O) =0, f'(0) =0, {"(0) = 2,

x+1 (X+ )

£7(0) = 76f (O) (7)n!ifn 2 =>xX-x3+x* =% +:Z(71)X

f(x)=x—2x+4 = f'x) =3x2 -2, f'x) =6x, f"(x) =6 = fW(x)=0ifn 4;f2) =8, (2) =
£12) = 12, £(2) = 6, {MQ2) = 0ifn 4 = x* —2x+4 =8+ 10(x —2) + 2 (x =2 + & (x — 2)°
=84+ 10(x —2)+6(x —2)? + (x — 2)°

619

f(x)=2x3 +x2+3x—8 = /(X)) = 6x2 +2x + 3, f"(x) = 12x + 2, f"(x) = 12 = f™W(x)=0ifn 4;f(1) = -2,

(1) = 11, £(1) = 14, f”’(l)—12,f")(1)201fn 4 = 2x3+x2+3x—8
= 24 HNE- D+ B a2+ 2x -1 = 2+ 1x— D+ 7x - D’ +2(x — )P

fx) =x*+x24+1 = f'(x) =4x3 + 2x, f'(x) = 12x2 + 2, f"(x) = 24x, ¥ (x) = 24, f{™W(x) = 0ifn 5;
f(—2) = 21, f'(=2) = =36, f"(—=2) = 50, f"(—2) = —48, f#)(=2) =24, f™M(-2) = 0ifn 5 = x*+ x> +1

=21-36(x+2)+ 3 (x+2)? = T x+2)° + 37 (x +2)' =21 — 36(x +2) + 25(x + 2)* — 8(x + 2)* + (x + 2)*

fx) =3x° —x* +2x3 +x2 =2 = f'(x) = 15x* — 4x® + 6x% + 2x, f/(x) = 60x® — 12x%> + 12x + 2,
£7(x) = 180x2 — 24x + 12, f*®(x) = 360x — 24, f®)(x) = 360, f{™M(x) = 0ifn 6;f(—1) = —7,
f'(—1) =23, f"(—1) = =82, f""(—1) = 216, f*)(— 1) = 384, fO)(—1) = 360, f{™W(—=1) = 0ifn 6

= 3 —x 2+ —2=-T+28Bx+ D -2+ D+ 30 x+ 1P - B+ D4+ x+1)7°
=—T7+23x+1)—41x+1)?+36(x+ 1) — l6(x + D* 43 + 1)°

fx)=x2 = f'(x) = =25, "(x) = 31x 4L 7(x) = —41x7° = fUx) = (-D"(n+ DIx "2
f(l) =1,£(1) = =2, (1) =31, (1) = 4L {0 (D) = (=)' + 1)! = &
=1-2x—D+3x—-1?—4x—-1)P3+... = Z D"+ D(x — 1"

n=0

f(x) =

£(0) = 1,f’(0):3,f”(0): 12, £(0) = 60, ..., f{M(0) = 2£2 - =1+3x+6x2+ 105> + ...

(1*X)3

) SLE= LN

n=0

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
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29.

30.

31.

32.

33.

34.

35.

36.

37.

Chapter 10 Infinite Sequences and Series

fx) =e* = f'(x)=¢e* f'(x) = e* = fM(x) =e*; f(2) = e, /(2) = e2, ... f{M(2) = e?
= =X+ T —2P+ x=D  = T S (x—2)
n=0

f(x) =2* = f/(x) =2 In 2, ’(x) = 2*(In 2)2, f"(x) = 2*(In 2)*> = fM(x) = 2*(In 2)"; f(1) = 2, f'(1) =2 1In 2,
£7(1) = 2(In 2)2, £(1) = 2(In 2)3, ... , £™(1) = 2(In 2)"

= 2% =24 (210 2)(x — 1) 4 202 ()2 p 20DT (g3 = 3 A2l

n!
n=0

f(x) = cos(2x + 2). f'(x) = —2sin(2x + §), f(x) = —4cos(2x + 7), f"(x) = 8sin(2x
(

@(x) = os(2x+ 1), fO(x) = —2%sin(2x + §), . .;f(3) = -1, (%) =0, {” g) ’"(g) =0,fW(5) =24,
5><%> =0, F(5) = ()27 = eos(2xt5) = 1 42(-5) =3 (- 9"+
=35 22"( 9"

() = X+ LI = 3+ )72 1700 = —§ (x+ 1) 72, 700 = %<x+1>‘5/2 <4><x>=——2(x+ )y

"
f(0) = 1,f'(0) = 3. £7(0) = =3, £7(0) = 3, fW(0) = — 12, ... = V/x+ 1 =1+ Ix — 2+ £x* — ex* + .

The Maclaurin series generated by cosx is ) %in which converges on (—o0, c0) and the Maclaurin series generated
n=0 ’

by 72— is 2> x" which converges on (—1, 1). Thus the Maclaurin series generated by f(x) = cosx — ;2 is given by
n=0

> ((;;))," x? =23 x" = —1 — 2x — 3x? — .... which converges on the intersection of (—oo, co) and (—1, 1), so the

n=0

interval of convergence is (—1, 1).

The Maclaurin series generated by e* is Z r Which converges on (—o0, o). The Maclaurin series generated by
n=0

f(x) = (1 —x+x?)e*isgivenby (1 —x+x?) 3 & =1+ 12 + 2x3.... which converges on (—o0, 00).

n=0

The Maclaurin series generated by sin X is Z 20+l

(2 ), X which converges on (—o0, 00) and the Maclaurin series

generated by In(1 +x) is 3 &

n=1

f(x) = sinx - In(1 + x) is given by (Z (2(n+>:)1x2“+1> <Z ﬁx“) =x? — 3x> + ¢x* — ... which converges on
n=0

X" which converges on (—1, 1). Thus the Maclaurin series genereated by

n
n=1

the intersection of (—oo, 00) and (—1, 1), so the interval of convergence is (—1, 1).

(=D" _2n+1
[TENR

o0
The Maclaurin series generated by sinx is ) which converges on (—o0, 00). The Maclaurin series
n=0

00 n 2 0 n 00 n
genereated by f(x) = x sin? x is given by x (Z (2(;4131)! XZI‘“) =x (Z ﬁxznﬂ) (Z (2(nJ1r)1)!X2n+1>
n=0 n=0 n=0

=x* — 1x° + &x’ + ... which converges on (—c0, 00).

Ife":z (a)(x a)" and f(x) = e*, we have f{™(a) = e* foralln =0, 1, 2, 3, .

n=0

0 1 2 a)2
= ef =g [(Xg!a) —— +(x;!a) +} =e? [1+(x—a)+(x;d) +...latx=a
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38. f(x) =e* = fM(x)=e*foralln = f®™(l)=eforalln=0,1,2,.
S —etex— D4+ Ex-D2+Ex-1P 4. =¢ 1+(x—1)+%+%+...

39. f(x) = f(@) + f'@x —a) + "2 (x —a)? + T@ x —a +... = f(x)
= f/(a) + f"(a)(x — a) + ““ 3x—a)P+... = () = "(a) + I"(a)(x — a) + @ 4. 3(x —a)? +
= f(x) = f"() + f<“+1>(a)(x @)+ U0 (x —a) +
= f(a) = f(a) + 0, f'(a) = f'(a) + 0, .. (a) =f™(@) +0
40. E(x) =f(x) — by — bi(x —a) —by(x — a)> — bg(x —a)®> — ... — bp(x — a)"
= 0 =E(a) = f(a) — by = by = f(a); from condition (b),
lim f(x) — f(a) — by (x —a) — ba(x _i)z - ba(x —a)® —... —by(x —a)" -0
X—a (x —a)
. f/(x) — by — 2ba(x —a) — 3bg(x —a)> — ... —nby(x —a)" !
= xhina n(x —a)-! =0
. "(x) — —3!bg(x —a) —... —n(n — Dby(x —a)" 2
= b =f@ = xh—r>na HE bal;((nfal))(x—a)“’(2 = =0
1 . () —3!bg—...—n(n— (n—by(x—a)P 3 _
= by = 3 f”(a) = Xhl,na n3(n — 1)(:112)0( 1121)"’3 : =0
=by = % " (a) = Jim, M =0 = b, = (“)(a); therefore,
(%) = f(@) + f'@)(x — a) + 52 (x —a)? +. @ (x —a)" = Py(x)
41. f(x) = In(cos x) = f'(x) = —tan x and f”(x) = —sec’x; f(0) = 0, f'(0) = 0, f"(0) = —1 = L(x) = 0 and Q(x) = — ’g
42. f(x) = e™* = f'(x) = (cos x)e*"* and f"(x) = (— sin x)e*"* + (cos x)%e*™*; f(0) = 1, f'(0) = 1, f"(0) = 1

LX) =1+xand Q) =1+x+7%

2)—1/2

f(x) = (1 = £'(x) =x (1 —x2) 7 and £"(x) = (1 — x2) " +3x2 (1 — x2) /%, f(0) =

) =1 = Lx) =landQx) = 1 + &

43. 1, £'(0) = 0,

44. f(x) = cosh x = f’(x) = sinh x and f”(x) = cosh x; f(0) = 1, f'(0) = 0,f"(0) =1 = Lx) =1land Qx) =1+ %2
45. f(x) =sinx = f'(X) = cos x and f"(x) = —sin x; f(0) = 0, f'(0) = 1, f"(0) = 0 = L(x) = xand Q(X) = x
46. f(x) =tanx = f/(x) = sec’x and f(x) = 2 sec’x tan x; f(0) = 0, f'(0) = 1, f" = 0 = L(x) = x and Q(x) = x

10.9 CONVERGENCE OF TAYLOR SERIES

Loef=1+x+%5+.. :ni o e o (=50 S — sk By 2) C1rse
2. & =ldxty+ :go Lo e =it (F)+ G s - A :2(‘2&".*"
s sinx=as§HE o =5 G o S = [ - 5 - = S
4osix=x-F+§-. =T s anpog -G GE-Ghe L -Squrae
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o0
& 2 [ (=I5t 25x* | 625x% _ 15625x1
5. CosX =D, oy = cos5X Z T Z eyl S Tl T TR AP
4\ 1/2
o0 n , 1/2 o (=1)" ("7;) 00
_ Ny (D 2N X _ ( : _ (=
6. cosx=>3. am— = Cos ) = cos { (% => @ => T

3 6 9
—1_x L x _ x
=l=s5tag —mat -

oo 71ﬂ]n 00 71n—| 2\n 0 71n71 2n 4 6 8
7 (14 x) = 3 EEE s n(1 ) = 3 CUREE = S EIES 2 g
_ 0O (1 20+ B X, (=1)"(3x4)™ ! LS )" 3201 8ntd -
8 nx =3 SR s @) =% () = 3 IS = o ox2 4 2000 - 23S

1= n_n 1w n(3.3\" _ o n(3\0 3 _ 3 9 27
9. 1+X—Z(—1)X :>1+%X3_HZ:%(_1) (ZX) —nX:%(—l) (Z) X3 _I_ZX3+EX6_ 7 9_|_

L% L1 1 1w n_ nl
10, Pl =300 = bt = 155 (30" = 5 (570 = b b b o+

11. e Z =X+ E AR AR+

|><
|
>
~
NgE!
=[N
~__
1[]2

o ( 1)n 2n+1 92 - o O ( 1)n 2n+1 ( l)n 2n+3 o 3 X5 X7 Xg
12. sinx = Z omor = X sin x = x2 (E TN > Z omnr =X Rt E -Gt
o0
_ (=D"x* =nhn _ x? x? x* x¢ x5 x!0
13. cosx =) oo = 1+cosx—771+2 oo =z Il S+ -Gty et
b
_xt x5 x8 x! (=D"x>
=h-mty-int Z(2n)'
( l)“ 2n+1 . ( 1)" 2n+1 3
14. sinx = Z “onminr = sinx — (Z T ) —X+3
3 5 7 9 11 3 5 7 9 11 > 1Px2n+
- (x—%+%—%+*—,—7—”+~-)—x+%:%—%+&—%+ =% G
n=2
oo o o
—1n" 2n —1)(7 2n __1\n-2ng2n+1 2,3 4,5 647
15. COSX:Z(Q;)}; = xcosmx =x Y ()212;") = 1)(;)!" =x-—Sr4Ix_1r 4
n= n=0 n=0
o~ (1) 2 2 2 on (=" ()" (L2 g 40 x10 xi
16. cosx =} =55 éxcos(x)*xz (2n), _ZW:X—5+I—H+...
— n=0
2n 2 4 6 S
17. cos?x = L peos2x — 1 41 Z( Chevt 141 [l_ex) @t ey oo _}
_1_ 7 x2S (2x)® =™ (= 1y 221 g0
=1 2or T 7a zor T 2gr o = =1+ Z 2-2n)! T 1+ Z 2n)!

18. sin?x = (“C—O‘Z") =

6!
o0 o0
1)n+](2x)2n ( 1)n 22n 1 2n
Z T 2:2n)! Z:l (2n)!
n=1 n=
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20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Section 10.9 Convergence of Taylor Series

2 =x2 () =X Z:%(ZX)“ = 2:%2“5("*'2 =x2+2x3 + 2% +23x° + ...

00 (_l)n—l(zx)n 00 (_1)n—12nxn+l 22 3 23 4 24X5
xIn(1+2x) =x Y =20 =5 =5 = 0x% — + 2 eI
n=1

n=1

00 00 e8]
oL XM= lex 0+ s R () s = A+ =D T = 2 (- DX

n=0 n=1 n=
(172”3:;_;(&):%(@):%(1+2x—|—3x2—|—...)—2—|—6x—|—12x—|— L= 2= X"
=3 (n+2)n+ Dx
tan~'x = x — 1x% + Ix” +... = xtan 1X2_X<X2_%(x2)3+%(x2)5_%(xz)7+ )

O (Z1)"xdn-1
:x3—%x7+§x”—%x15+ 22(2371
3 5

51nx:x—’3‘—j—|—’5‘—f—’7‘—7,—|—... :>sinx-cosx:%sin2x:%(2x—<2x,) —|—(25X,) —(27"!)74—...)
_ 4x} | 16x° _ 64x] _ 233 | 2% _ 4x (=pra 2t
=X—3rt5 T +"'_"_T"‘T_s— _Z @Dl

e":1—|—x+’§—i—|—’3‘—?—|—...and =1—-x4x2—-x+... >+

1+x l+x
2 3 >,
:(1+x+%+%+...)+(1—x+x2—x3—|—...):2+%x2—6x3+§—ix4+... :;)($+(—1)")x“
sinx=x—-%+% %4 _andcosx=1-—2% +% x4 = Ccos X — sin X
- 3! 5! 7! - 2! 4! 6!
2 4 6 3 5 7 5 6 7
:(1—’2%+27*%+...)f(x—%+§*%+...):1— P N e r T U

. i (—1nx2n B (=1)nx2n+!
- (2n)! (2n+1)!
n=0

In(1+x) =x— x>+ 1 — ix* + .. andIn(1 —x) = —x — §x? — 1 — 3x* + ... = In(1 +x) — In(1 — x)

\
—
>
\
|
>
+
>
ENT
>

.
+
N
\
—~
\
>
\
=
>

)
\
=
el
w
\
IN|
>
B~
+

o0
_ 2.3 2.5 _ 2 o+l
L) =2x+ 33 + 2x +..._§0j2n+lx
b

2 3 . 7 .
e"zl—i—x—l—%—l—%—f—...andsmx:x ’5‘——%+...:>e"~smx

\1|>< w|><

+
:(1+x+§+§+...)(x—§+§— +. ):x+x2+%x3—3—10x5—....

In(1+x)=x— 3+ —Ix*+ . and T = 1+x+x2+x3+ ... = 1“1(1+;> In(1+x) -
=(x— 3+ - ) Hx+ 2+ 3+ ) =x A 2 St
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31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

- —1.\2 _ _

tan~'x =x — 1x} 4+ 1x7 — Ix7 4. (tan x)” = (tan™'x)(tan"'x)

—(x— L3 4 15 L7 4 _ 1 5_ 147 —x2 2442346 44,8

_(x 3X7 + 35X 7X )(x x+ X 7X —I—...)—x 3X — X — 15X+ ...

. x} x5 x/ X2 X4 XG 2 . .
smx:x—y—i-g——,—l—...andcosx:l—f—l—ﬁ—@—l—...#cosx-smx:cosx~cosx-smx

7
_ 1 112« L, (@) o T3, 6l .5 12477
= Ccos X 2s1n2x— 2(1 7+ m o —|—...)(2x 3 T =+ ... ) =X — X7+ 755X 550X -

:1+x+%x2—éx4—|—....

e _x 1y 1,3, 1,5 1.7 : “Ig) — (v 1,3 1 1,5 1.7
sinx = x — 3,4—5, I +...andtan”'x = x 3x—l—x X'+ .. = sin(tan'x) = (x — 3x3 4+ 47 = Ix7 4

! 1374+, ) + 5 (x — 33 + x5 %x7+...) o (x — 30 4 x5 %x7+...)7+...

—g(x——x + x5

1
7

e 1.3 55_17
=X 2x—|—8x 6x—l—

)

Since n = 3, then ) (x) = sinx, | (x)| < Mon [0,0.1] = [sinx| < 1 on [0,0.1] = M = 1. Then [Ry(0.1)| < 12L-0°

=42 % 107% = error < 4.2 x 107°

Since n = 4, then ) (x) = ¥, |[f®)(x)| < Mon [0, 0.5] = [¢X| < y/eon [0, 0.5] = M = 2.7. Then
IR4(0.5)] < 272529 — 703 x 10~* = error < 7.03 x 10~

By the Alternating Series Estimation Theorem, the error is less than ‘5, = x> < (5) (5 x 1074 = [x|° < 600 x 10~

= |x| < V6 x 1072 =~ 0.56968

Ifcosx=1-% and |x| < 0.5, then the error is less than ‘(5)

‘ = 0.0026, by Alternating Series Estimation Theorem;

since the next term in the series is positive, the approximation 1 — %2 is too small, by the Alternating Series Estimation

Theorem

If sin x = x and |x| < 1073, then the error is less than (10 3 ) 1.67 x 1071°, by Alternating Series Estimation Theorem;

The Alternating Series Estimation Theorem says Ro(x) has the same sign as — ’3‘—? Moreover, x < sin X

= 0<sinx—x=Ry(X) = x<0 = —103 <x<0.

VIitx=1+73 - ’% + ’1‘—2 — ... . By the Alternating Series Estimation Theorem the |error| < ‘%
=1.25x107°

(0.1) 3 .

% < 1.87 x 10~*, where c is between 0 and x

3
IRo(x)| = 3—,) = 1.67 x 1074, where c is between 0 and x
. — cos 2 4 6 3yl 5
sin?x = (122 =}~ foosax=f - (1= G GF -G ) =5 -
: : 5.6 3 5 7 .

= L (sin’x) =& (22—"2 - L’,‘A + 2L —) =2x - & 4 &8 @ 4 = 2sinxcosx

PSS

o . = sin 2x, which checks
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47.

48.

49.

50.

51.

52.
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2 4 6 Sy 7
cos? X = cos 2x + sin’x = (1—%4—(24"!) (ZX) +(2§,) +. )+(22i,—£+2 6—28—’!‘8—}-...)

12 23‘_25x6 1 _ 214 2 1 8 _
=1-3-+% a0 T =1 x+3x 45X +a3s X — .

A special case of Taylor's Theorem is f(b) = f(a) + f'(c)(b — a), where c is between a and b = f(b) — f(a) = f'(c)(b — a),
the Mean Value Theorem.

If f(x) is twice differentiable and at x = a there is a point of inflection, then f”(a) = 0. Therefore,

L(x) = Q) = f(a) + f'(a)(x — a).

(a) f” <0,f'(a) = 0and x = a interior to the interval I = f(x) — f(a) = @ (x — a)? < 0 throughout I
= f(x) < f(a) throughoutI = f has a local maximum at x = a
(b) similar reasoning gives f(x) — f(a) = @ (x —a)> Othroughout] = f(x) f(a) throughout] = fhasa

local minimum at x = a

f(x)=1-x"!'=f/X=01-x"2= f'x)=2(1-x73 = fOx) =6(— x)—4

@(x) = 24(1 — x)7%; therefore - ~ 1 +x + x> +x% x| <0.1 = 10 <L < B = ‘ < (%)5

(I=x7

max f (x) x4

—

= ’ < (0.D* (%)5 = 0.00016935 < 0.00017, since

<X (190) = the error es <

(I—xy = ‘(I—X)"’ :

@) fx) =+ = f'(x) =k(1 + 05" = £/(x) = k(k — D(1 +x)52; £0) = 1, (0) = k, and £"(0) = k(k — 1)
= Q(x)—1+kx+—k(k*” 2

(b) Ro)| = |22 x| < 355 = X} < 755 = 0 <x < g5 or 0 < x < 21544

(@) LetP=x+7 = |x| =|P— 7| <.5x 107" since P approximates 7 accurate to n decimals. Then,
P+sinP=(@m+x)+sin(mr+x)=(@m+x)—sinx=r+ (x —sinx) = |(P+sinP) — 7|

0.125 125

=|sinx — x| < ‘Xl < x 107" < .5 x 1073" = P + sin P gives an approximation to 7 correct to 3n decimals.

If f(x) = i anx™, then f(x) = 3 n(n — D0 — 2)--(n — k + Dapx"* and FO(0) = k! ay
n=k

(
= A = f (O)

for k a nonnegative integer. Therefore, the coefficients of f(x) are identical with the corresponding

coefficients in the Maclaurin series of f(x) and the statement follows.

Note: feven = f(—x) = f(x) = —f'(—x) =1'x) = {'(—x) = —f'(x) = {’ odd;

fodd = f(—x) = —fx) = —f'(—x) = —f'(x) = f'(—x) =1f'(x) = {’ even;

also, fodd = f(—0)=1f(0) = 2f(0)=0 = f(0) =0

(a) If f(x) is even, then any odd-order derivative is odd and equal to 0 at x = 0. Therefore,
a; = ag = a5 = ... = 0; that is, the Maclaurin series for f contains only even powers.

(b) If f(x) is odd, then any even-order derivative is odd and equal to O at x = 0. Therefore,
ag = ag = a4 = ... = 0; that is, the Maclaurin series for f contains only odd powers.

53-58. Example CAS commands:

Maple:
f:=x -> 1/sqrt(1+x);
x0 :=-3/4;
= 3/4;
# Step 1:
plot( f(x), x=x0..x1, title="Step 1: #53 (Section 10.9)" );
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626  Chapter 10 Infinite Sequences and Series

# Step 2:

P1 :=unapply( TaylorApproximation(f(x), x = 0, order=1), x );

P2 := unapply( TaylorApproximation(f(x), x = 0, order=2), x );

P3 :=unapply( TaylorApproximation(f(x), x = 0, order=3), x );

# Step 3:

D2f := D(D(f));

D3f := D(D(D(1)));

D4f := D(D(D(D(H))));

plot( [D2f(x),D3f(x),D4f(x)], x=x0..x1, thickness=[0,2,4], color=[red,blue,green], title="Step 3: #57 (Section 9.9)" );

cl :=x0;

M1 :=abs( D2f(c1) );

c2 :=x0;

M2 := abs( D3f(c2) );

c3 :=x0;

M3 := abs( D4f(c3) );

# Step 4:

R1 :=unapply( abs(M1/2!*(x-0)"2), x );

R2 := unapply( abs(M2/3!*(x-0)"3), x );

R3 := unapply( abs(M3/4!*(x-0)"4), x );

plot( [R1(x),R2(x),R3(x)], x=x0..x1, thickness=[0,2,4], color=[red,blue,green], title="Step 4: #53 (Section 10.9)" );

# Step 5:

E1 := unapply( abs(f(x)-P1(x)), x );

E2 := unapply( abs(f(x)-P2(x)), x );

E3 := unapply( abs(f(x)-P3(x)), x );

plot( [E1(x),E2(x),E3(x),R1(x),R2(x),R3(x)], x=x0..x1, thickness=[0,2,4], color=[red,blue,green],
linestyle=[1,1,1,3,3,3], title="Step 5: #53 (Section 10.9)" );

# Step 6:
TaylorApproximation( f(x), view=[x0..x1,DEFAULT], x=0, output=animation, order=1..3 );
L1 := fsolve( abs(f(x)-P1(x))=0.01, x=x0/2 ); # (a)

R1 :=fsolve( abs(f(x)-P1(x))=0.01, x=x1/2 );
L2 := fsolve( abs(f(x)-P2(x))=0.01, x=x0/2 );
R2 :=fsolve( abs(f(x)-P2(x))=0.01, x=x1/2 );
L3 := fsolve( abs(f(x)-P3(x))=0.01, x=x0/2 );
R3 := fsolve( abs(f(x)-P3(x))=0.01, x=x1/2 ),
plot( [E1(x),E2(x),E3(x),0.01], x=min(L1,L2,L.3)..max(R1,R2,R3), thickness=[0,2,4,0], linestyle=[0,0,0,2],
color=[red,blue,green,black], view=[DEFAULT,0..0.01], title="#53(a) (Section 10.9)" );
abs(f(x)"-"P*[1](x) ) <= evalf( E1(x0) ); # (b)
abs(Cf(x)"-"P*[2](x) ) <= evalf( E2(x0) );
abs(f(x)"-"P*[3](x) ) <= evalf( E3(x0) );
Mathematica: (assigned function and values for a, b, ¢, and n may vary)
Clear[x, f, c]
flx_]= (1+x)¥
{a,b}={—1/2,2};
pf=Plot[ f[x], {x, a, b}];
poly1[x_]=Series[f[x], {x,0,1}]//Normal
poly2[x_]=Series[f[x], {x,0,2}]//Normal
poly3[x_]=Series[f[x], {x,0,3}]//Normal
Plot[{f[x], polyl[x], poly2[x], poly3[x]}, {X,a,b},
PlotStyle — {RGBColor[1,0,0], RGBColor[0,1,0], RGBColor[0,0,1], RGBColor[0,.5,.5]}1;
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The above defines the approximations. The following analyzes the derivatives to determine their maximum values.

f'[c]

Plot[f'[x], {x,a,b}];

"[c]

Plot[f"[x], {x,a,b}];
f"[c]

Plot[f"[x], {x,a,b}];

Noting the upper bound for each of the above derivatives occurs at x = a, the upper bounds m1, m2, and m3 can be defined

and bounds for remainders viewed as functions of x.
ml=f"[a]
m2=-f"[a]
m3=f""[a]
rl[x_]=ml x2 /2!
Plot[r1[x], {x,a,b}];
r2[x_]=m2 x> /3!
Plot[r2[x], {x,a,b}];
3[x_]=m3 x* /4!
Plot[r3[x], {x,a,b}];

A three dimensional look at the error functions, allowing both ¢ and x to vary can also be viewed. Recall that ¢ must be a

value between 0 and x, so some points on the surfaces where c is not in that interval are meaningless.

Plot3D[f"[c] x* /2!, {x,a,b}, {c,a,b}, PlotRange — All]
Plot3D[f"[c] x> /3!, {x,a,b}, {c,a,b}, PlotRange — All]
Plot3D[f""[c] x* /4!, {x,a,b}, {c,a,b}, PlotRange — All]

10.10 THE BINOMIAL SERIES

LoA+0"2=1+1x+ ) (;%)X:’ FC)) (*%g!(*- T N P R

> (1+X)1/3:1+%X+(%)(;%)X‘Jr(%)(*%3)!(*3)X3+ P P

3. (-2 =1-L(x+ (=3) (—2!%)(—*)2 ) (—%)3'(—3)(—") b=l lx+230+ 2x
ot s gy e QEE |

5o (143) =120 OGS CANDE) g gy e 1y

6. (1-3) ' =1+4(=3)+ (4)(3)2(!_§)2 + (4)(3)(23),(_%)3 + (4)(3)(2)2)(_ ) +04... =1—3x+2x2—
7. 1+x3) =1 Lyd 4 (=3) (;%)(x3)2 4 (=2) (—%g’(—%) ()’ R R R P S
8. (1+x2) Y3 —1- Ly (=3) (—23) (x2)? 4 B %)3!(— D e’ b=l lx2g gt 10

9 (14_%)1/2:14_%(%)4_(%)(—2%)(924_(%)(—%)3(!—%)(1)3+ RS R I T
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13.

14.

15.

16.

17.

18.

19.

20.

21.

2

N

23.

) —\3/1"? = x(1 —|—X)_1/3 :x(l —(

Chapter 10 Infinite Sequences and Series

wl»—t

St =1 dx o DO GODE | GEION _ 4 gx 4 6x2 + 4x° + x*

2 3
(1+x2)° =1+322 + Q) 4 OODET _ 7 4 352 4 354 + %

(1= 2x)% = 1 4 3(—2x) + QA" | GO _ g _ 6x 4 12x2 — §x3

(1 _ %)4 — 144 (_ %) + (4)(3)2(!7 5’ + (4)(3)(23)'(* 9 + (4)(3)(2)(1)(* %) —1—2x+ %Xg _ %x?’ + % x4

0.2 0.2 0.2
j; sinxde:j; (2—§+X5—T—...)dx:{";—%+...} z["ﬂo ~ 0.00267 with error

IE| < £~ 0.0000003

731
02 e 02 x2 x* x! 02 X x> x3
2K 02 - 02"
=[xy =55+~ —0.19044 with error B[ < 2 ~ 0.00002

0.1 0.1 .
. \/ﬁdx_f (17"71+38i87...)d)(:[x7?—0+...} %[X]g'lzo_lwitherror

E| < @1 — 0,000001

P EDCDE (—%)(—g!)(—_%>x3+___> T RSN

0.25 0.25 . . ) .10.25
3 X2 x4 o < xP N 3 - .
fo \/1—|—x2dx:j; (1—|—?—3+...)dx—{x+g—g+...} N{x—kg}o ~ 0.25174 with error

E| < ©29° ~ 00000217

o 01 PR 8 5 7 0.1 5 o701
Jo mra= (I_T""?_?"i'"')dxz[X_T"'S-S!_ﬁ"’”'} N{X_ﬁ"'s-sz}

~ 0.0999444611, [E| < @11~ 2.8 x 10712

6

0.1 s 0.1 3
foexp( )dx = ( ’2‘— é—!—i—i—!—...)dx:{x—%—i—’l‘——l—i—z—i—...} %[x—%—i—’]‘—o

~ 0.0996676643, |E| < ~ 4.6 x 10712

(1 +X4)1/2 — ()2 ¢ @(1)—1/2 (x}) + (i)( 5) ()~ 3/2( ) + () (= ;') (=3) (1)~5/2 (x4)3

3
1) (= 1) (= 3) (=3
+(2)< 2)5! 2)( 2)(1)77/2(X4)4+'“:1+%7x§8+%751x71;+“'
0.1 .
= [ (5 -5+5% -5+ )dxw[x+7—0} ~0.100001, [E] < V" ~ 1.39 x 10!
Lo 2 4 6 8 3 5 7 9 71
fo(l ;f“)dx:f;<%—%+%—%+ﬁ—...)dxz[g—ﬁ+5’_‘6!—7’_‘8!+9"‘w!}0

~ 0.4863853764, [E| < -

: 2 : 2 [ ¢ t3 !
focost dt:j;(lferff—Jr )d :[tfm+ﬁfﬁ+...]o = lerror| < 3 ~.00011
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2 3 4 2 3 4 5 1
24. [ cos \/tdi= f( —2+%—&+§—...)dt:[t—‘z%—ﬁ—%‘ﬁ—ﬁ—...h
= lerror| < g% ~ 0.000004960
25 F _f 10 (14 s I (1 (15 x X X7 11
- Fio) = ( Sts-Hte )d_{§_ﬁ+11-5!_ﬁ+“'}0N7_ﬁ+11-5!
= |error| < 5= ~ 0.000013
10 12 3 5 7 11 13 x
26'F(X):j;< t4+___+[__l_+ )dt:{%_%"’ﬁ_%'—"lim_15-5!""“']0
3 5 7
N5 =5t as — ga +1’;4, = lerror| < 75 ~ 0.00064
2. @ Fo = [ (t=§+5 -G+ )d=[S- G+ -] 25 -5 = Jeror] < G ~ 00052
(b) lerror| < 55 A~ 00089 when F(x) & & — 2 4+ 20 — X 4 (1)l 22
28. (a) F(x):f(l——+fff+ )d :{tfz%Jr%*%+%f...]0zxf§—z+%*%+§
= |error| < (05) ~ .00043
(b) |err0r|<@z.OOO97whenF(x)zx—’2‘—24—’3‘—3—2—;—1—... F (1R
29. % (e *(1+x))*é((1+x+";+’3‘—?+...)—l—x):%+%+2—f+... L
_ 1 2 _1
= dim (b3 +5+.) =14
30. %(eX—eX):i{(1+x+§—?+§—f+§—’§+...) (1—x+———+4,—...>}:% X422y
=24 o Jim et = lim_ (2+23", +25—+27—!+_..>:2
, , 1-cost— (5
31, %<1fcost77):$[ 777(1—7+}T‘f§!+---)}:*l+5*%+--- = lim ()
= lim (—%+——ﬁ+...):—§
3 3 5 o 4 . sinf — 6 + £
32.%(9—1— +s1r19) %(9—#94—9 & +& ):%—%4-%— = Jim - (%)
— 1 12,6 _ 1
= fim, (555 ) =
3. L(y—tanly) =L [y— (y-L4+L— —1_¥ ¥y _ o qjm ey 1oy vy
C 5y V=3xy-(y=-5+5—..)|=3-5+5—... Jmp = = lim (5 -5 4T -
_ 1
-3
3 5 3 5 3 5 2
34. ylcosy T y3 cosy = y3 cosy = cosy
1, 23y?
: tan~!y — sin . <76+T7'> 1
= Jim) Fey = Jim =%
35. X2(71+e*1/x2)zx (“l+l-p+gm—got.)=—ldg0—ga+... = lim x2<e71/x271)

= lim (1455 —gat...)=-1
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: 1 _ 1 1 1 _ 1 1
36. (X+1)S1n(x+l)—(X+1)<m—m+m—...)—1—m+5!(x—+1)4—

: : 1 _ : 1 1 —
= lemOO (X+1)Sln(x+l) —xll’moc (1—m+m—) 71

37 m0+x) _ ("27§+§7"'> _ (17%+%7“') — lim RO+x)

= : = = lim ~—— / =21=
e T (mgen ) (Gemea) xmo Tees T T (Roge)
x2—-4 _ (x=2)(x+2) _ x+2 H x*—4
38. In(x—1) — [(xiz)i(x;2)2+(xf32)37.”} - [17¥+(X22)27“. = XITZ In(x—1)

= lim x+2 =4
X — 2 [1—%+%7.4.}

: 2 _ 2,2 _ 9,6 81,10 _ 92 244 4 4.6 : sin 3x>
39. sin3x” = 3x 3X° + 35X ... and 1 —cos2x = 2x 5X7 + 55X ...:>X1£>no e

T 3x2—9x6+ﬁx]0—..._ . 3—%x4+ﬁxs—.4._3
_Xlgno 2x272%x4+4425x67... _xlgn() 27%x2+gx47... —2
9 3
40. In(1+x%) = x* = ¥+ % =4 and xsinx® = — b7 px!! = xS = lim L)
. x37"76+%7#+... . 17§+§7§+...
:xlgno X3 — Ix7 4 hox! — xS+ :Xlgn() 1— Ixt 4 ox® — px 2+ =1
4L 1T+l + 5 +5+5+...=e=e
13 1\4 1) _ (13 1 1)2 _ 1 1 _ 14 _ 1
2.()+@) +@)+ =@+ | Farm T e =
43. 1 3? 3 36 — 1= 1 (3)2 13\ _ 136 _ 3
A=gytag—gato-=1-20G) +2G) —a@) + ... =cos(3)
1 1 1 1 _ (1 1(1\2 L 1/1\3 _ 11\ _ 1y _ 3
M 3—smtam gt =) —30) +36G) —1GE) +... =h(+3) =(3)
457T bt T ! o 1 (7\3 1 (7\5 1(m\7 _-Tr_\/§
i dmtE oAt =5 -5(5) +53) 7))+ =sin(§) =%
2 23 2’ 27 _ (2 12)3 L 102)\5 _ 12V _on—1(2
6. F-Fstis -t =03)—33) +53) —7() +... =tan”'(3)
47. x3—|—x4—|—xs—|—)(6—|—...:)(3(1—|—X—|—)(2—|—x3—|—...):)(3(11)():1"_3X
2,2 44 646 2 6
48. 1 - 43X 34 =1-1(3) +%(3x)4—é(3x) + ... =cos(3x)
49. x3—x5—|—x7—xg—|—...:)(3(1—)(2—1—(7(2)2—()(2)3—1—...>:)(3(ﬁ):$3x2
2 3 4
50. x2—2x3+%’f4—%+ﬁ—’!‘6— :x2(1—2x+(2zx!> —(23’(!) +(2:!) —...):xze_zx
51 —1—4-2)(—3’)42—1—4)(3—5)(4—|—...:(%((1—x—i—xz—x3—|—x4—)<5—|—...):%(ljrx):(ljrlX>2
2 1+3+5+5+5+ . =-Hx-F-5-5-%- )= -ln(l-x = -2
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: ln(lf’;)zln(l—kx)—ln(l—x):(x—%2+’§—3—"74+...)—(—x—";—";—’%—...) :2(x+§+§+...)

2 3 4

.ln(l-l—x):x—%-i-%—xz—i—...+@+... = |error|:‘

1 1
ne < 10

= nlO" when x = 0.1;

(_l)n—lxn
n

= nl0" > 108 whenn 8 = 7 terms

x=1;

3 2n—1

_ 3 5 7 9 1n12nl 1n12n1
StanTlx=x—-5 45 -5 45— +¥+...:>|error|:‘( ;nl ‘7

5 < 15 = n> 191 =500.5 = the first term not used is the 501" = we must use 500 terms

5 )n—IXZn—l

Iy x Xy x X D" X
LtanT X =x— %+ % -+ 5 -+ =57+ and lgmOO

x2n+] ) 2H _ 1
2n+1  x2n-1

2

lim

n— oo 2n+l|_x

=

= tan~! x converges for |x| < 1; when x = —1 we have Z whlch is a convergent series; when x = 1

n=1

1 x diverges for |x| > 1

5 7 n—1,2n—1 . .
CtanTlx =x — X—3 +5 -5+ X—g -+ (lz)T + ... and when the series representing 48 tan~! (%) has an

error less than 10 6 then the series representing the sum

48 tan~! (1—8) —l— 32 tan~! (ﬁ) —20 tan™! (239) also has an error of magnitude less than 10~%; thus

1 2n—1
lerror| = 48 (211)—1 < sl = n 4 usinga calculator = 4 terms

2 4

. ln(secx):j;tantdt:j;(t+§+21—§+...)dt%%—|—;‘——|—:—5+...

. (a) (17x2)71/2“'1+ +7+7 = sinlx~x+ % +—+m,UsmgtheRatloTest

1 = XQHILm (2n+ D(2n+1)

lim  |1335-CGn-D@Ent hx™ - 246 -@nen+1)
oo | (2n+2)2n+3)

nbo | 246 -2m2n+2)2n+3) 135 -(2n— Dx2+1

<1
= |x| <1 = the radius of convergence is 1. See Exercise 69.
— -1/2 _ . 5 7
() £ (cos™'x) =—(1—x?) 2 = cos 'x=7% —sin 1x%7—2r—(x+ + +“2)z%—x—%—%—%

@ (e ()2 4 (= 1) 1y (@) 4 C) (—%)2;1>*5'2<t2>2+ CHEDCDO e

—1_ 3t 35 f s g = © o s
=1- G455 — 3% = sinh'x~ ( 5+ dt=x—%+2% — 2

(b) sinh! = (0.24746908; the error is less than the absolute value of the first unused

(z)%%*@+m

evaluated att = 4 since the series is alternating = |error| < 5sG) ~ 2.725 x 107°

5x7
term. 112

> 1122

-1 d -1\ _ _1
1+_x*_1—(x) =—14+x— +x3—...:>5( )7— ( T+x—x>2+x3—...)

=1—-2x+3x2—4x3 + ...

o=l x4t =2 L ()= R = L0+ ) = 2 A 60
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632  Chapter 10 Infinite Sequences and Series

63. Wallis' formula gives the approximation 7 = 4 L;:g:g:g:g:?:é’f}zf T).z()z'izf)l)] to produce the table

n ~T
10 3.221088998
20 3.181104886
30 3.167880758
80 3.151425420
90 3.150331383
93 3.150049112
94 3.149959030
95 3.149870848
100 3.149456425

At n = 1929 we obtain the first approximation accurate to 3 decimals: 3.141999845. Atn = 30,000 we still do
not obtain accuracy to 4 decimals: 3.141617732, so the convergence to 7 is very slow. Here is a Maple CAS

procedure to produce these approximations:

pie :=
proc(n)
local i;
a(2) :=evalf(8/9);
for i from 3 tondo a(i) := evalf(2*(2*1—2)*i/(2*i—1)"2*a(i—1)) od;
[:4*a()] $ G = n=5 .. n)]
end

k=1 k=1 k=1
= (o e (o = ()RR (PR = (T) ()X + D (TR + 3 (D)kx
k=1 k=1 k=1 k=1 k=2 k=1
:m+i (T)kxk—1 4 i (V)kx* Note that: 3 (7 )kx*~! = i (7)) +1)x*
k=2 k=1 k=1
Thus, (14 x) - f'(x) = m+ i (']’:)kxk’1 + i (rl?)kxk =m+ i (k'j:l)(k—l— 1) xk + i (’]':)kxk
k=2 k=1 k=1 k=1

+
—_
S~—
-+
—~
~ B
~—
~
SN—r
b
~
—

:m+§:[(k+l)(k+l) (T)kxk}:m+,§[((k2')(k

k=1
Note that: (17, )k + 1) + (f)k = ME=HgRpid(k 4 1) o Btttk
m-(m— m—k m-(m—1)---(m—k+1 m(m—1)---(m—k+1 m-(m—1)---(m—k
( 1) (m—k) oo 1>k'( + g me 1>k!( + )((m—k)+k):m ( 1)1(!( +1):m(rll(1)'
k

Thus, (1 + x) - £/(x) = m+2{((k+l)(k—|—1) (’:)k)xk]:m+§[(m(?))xk}:m%—mi(?)x

m(l )zm-f(x):f’(x):?‘l'i(:)) if—1<x<1.
(b) Letg(x) = (1 +x) M(x) = g'(x) = —m(l + %) (%) + (14 %) (x)
= —m(1+x) ")+ (144%™ 8 = —m(1 )™ ) + (1+) ™" m-f(x) =0
© gx)=0=g(x)=c=(1+x)"™Mx) =c=f(x) = (Hi),m =c(1 +x)™. Since f(x) = 1 + i::l(?:)xk

:>f(0):1+i(’]‘:)(0)k:1—|—021:>c(1—|—0)m:1:>c:1:>f(x):(1+x)m.

65. (1) = (14 (=) 2 = (1) V2 4 (= 1) (1302 (=) - CRLEDW RO

LY (L3 (2 5) (1) T2 (—x2 y e e
p EDEDEIOTRERT g aget gy eSO
n=1
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66.

67.

68.

69.

70.

71.

72.

Section 10.10 The Binomial Series

~ sin-lx — fx(l — ) V2 g — f‘ i 135-@n- "\ g n i 1-3-5--.(2n — 1)x2*!
s x = J, 2nn =X < 24D
-

where |x| <1

LZ 00
[tan™' (] =7 —tan~'x = *f [I-E‘()l—,] t:f; F(1-3+5-5+..)d

t_
_[T(1_1_,.1_1 _ 1 1 b _ 1 1 1
*fx(t—z—ﬁ+t—s—t—s+-'~)dt*b11,moc [Fttm-swtw— ] = -mtse ot

1

X

X
= tan'x=7-14+ -+ . x>Dftan ']’ =tanlx+]= fix e
— R 1, 1 x _ 1y _
= lim [t ot =it s tae — o = tanix=—

x < —1

(@) e ™ =cos(—m) +isin(—7m) = —14+i0) = —

(b) e™* =cos (%) +isin (%) = \[ \[ (%)(14—0
() e ™2 =cos(—Z)+isin(—%) =0+i(—1)=—i

633

e =cosf+isinf = e =el=) = cos(—6) + i sin(—6) = cos § — i sin ;
el + e =cosh+isinf+cosf—isind=2cosh = cosH—ew’g—e%;
el —e ¥ =cos@+isinf — (cosf —isinf) =2isinf = sinf = e 5 -
2 3 1 . . 2 .3 o

T N

: 3 _ipyt . :9)2 :9)3 .9t
A

et (1+19+(‘.’_§%+“§§3+“Z§4+.,.)+<1—10+%4‘§§3+%—“.>
- 3 = 2

2 4 6
=1-5+% -8+ .. =cos;
. i0)2 i0)3 it . i0)2 i0)3 in)4

R o B L e e e

% %

3 5 7 .

:07%+%7%+...:sm0
e =cosf+isinf = e =e-% = cos(—0) +isin(—6) = cos § —isin @
(@) e’ +e ¥ = (cos @ +isinf) + (cos§ —isinf)=2cosf = 0039:W:c05hi9
(b) ¢ —e ¥ = (cos @ +isinf) — (cos§ —isinf) =2isinh = isinfh = e _2649 = sinh if

. 2 3 4 3 5 7
e"smx:(l—l—x—l—%—l—%—l—%—l—...)(x—%—l—%—%—k...)
=Mx+M+ (—+ D)+ (i + )+ (g ta) X+ =x+x2+ 33— x4+
e* - e = e(I"x — eX (cos x 41 sin x) = e* cos x +i (e* sin x) = e* sin x is the series of the imaginary part

. 3

of e!*)% which we calculate next; e! ) = Z (H”‘) =14+ x+ix)+ (”2,”‘) + (”,”‘) + (XZ,"‘) +.
:1+x—|—ix+%(2ix2) + 4 (2ix3 — 2x%) + —(—4x)+%(—4x5—4ix5)+%(—Sixﬁ)—f—... = the imaginary part
of e isx + Zx?+ 2x3 — 4 x° - ExO+ ... =x+x>+1x}— & x5— L xO+ ... in agreement with our

product calculation. The series for e*sin x converges for all values of x.

O% (e<a+ib)) = (%( [e**(cos bx + i sin bx)] = ae**(cos bx + i sin bx) + e**(—b sin bx + bi cos bx)

= ae®™(cos bx + i sin bx) + bie®*(cos bx + i sin bx) = ac@+P)X 4 jpel@tib)x — (3 4 jp)elatib)x
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634  Chapter 10 Infinite Sequences and Series

73. (a) e%el”> = (cos 6, + i sin 0;)(cos Oy + i sin By) = (cos H1cos By — sin B;sin B) + i(sin O cos By + sin Bycos 6;)
= cos(f; + 6o) +isin(f; + 6y) = '@ +02)

(b) e = cos(—0) + i sin(—f) = cos # — i sin 6 = (cos § —isin f) (Lol — L — 5

74, 4% e 4 € 40Cy = (A755) e™(cos bx + i sin bx) + C; +iC,

= ﬁaxbz(acosbx—i—iasinbx—ibcosbx+bsinbx)+C1—|—iC2

= = [(a cos bx + b sin bx) + (a sin bx — b cos bx)i] 4+ C; +iCy

_ @ Cosasj-t; sin bx) +C + ie™(a sinaia:szb cos bx) +iCy:

e(@Fbix — eXebX — 62X (cog bx + i sin bx) = e®™ cos bx 4 ie** sin bx, so that given

f elatbx gy — —a";jr%iz e@tb)x 1 C; +iC, we conclude that f e™ cos bx dx = S@cosbxtbsinby) |

a? 4 b2
. ax i —
and feax sin bx dx = S-(@sinbx —bcos bx) S‘“a‘;i b,E cosb) 4,

CHAPTER 10 PRACTICE EXERCISES

. . . . (71)" o
1. converges to 1, since nlgmOO a, = nleOC (1 + = ) =1

2. converges to 0, since 0 < a, < 2  lim 0=0, lim 2 =0 using the Sandwich Theorem for Sequences
\/ﬁ n— oo n— oo \/ﬁ
. . . . 172“ _ . L _ _
3. converges to —1,since lim a, = lim (55) = Jlim (5 —1)=-1

4. convergesto 1, since lim a, = lim [1+(0.9)]=1+0=1
5. diverges, since {sin T } = {0,1,0,-1,0,1,...}

6. converges to 0, since {sinnw} = {0,0,0,...}

7. converges to 0, since lim a, = lim %
n— oo — X

8. converges to 0, since _lim a, = _lim n@u+h — ijm =0
n— oo n— oo n n— oo 1
. . . . 1+(4
9. convergesto 1, since lim_a, = lim (w) = lim <") =1
n— o0 n— 0o n n— 00 1
. . . In (20% 4 1) . (Z%Hil) . 12n . 2
10. converges to 0, since lim a, = lim ———— = lim 2 = lim A= Ilim ==0
n— o0 n— 0o n n— 0o 1 n—oo 6n n-—oo n

11. converges to e, since Jlim a, = lim (“*5)" = lim (1 + (;i) = e~ by Theorem 5

12. converges to ;, since lim _a, = lim (1+;) "= lim +1§)“ = 1 by Theorem 5

. . . ny 1 .
13. converges to 3, since lim _a, = lim (%) M— fim 2 =3=3 by Theorem 5
n— oo n— oo n n—oo nY 1
. . . 1 . /n
14. converges to 1, since lim a, = lim_ (2) ™~ Tim 3" =1 _{py Theorem 5
n— 0o n— o0 \n n—oo ni/t 1
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15.

16.

17.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

Chapter 10 Practice Exercises

(721/" In 2)

n2

|
-

converges toIn 2, since _lim_ a, = lim_ n(2"" — 1) = lim_ 2':! = lim +——— = lim_2"/"In2
n =00 n= 00 n =00 (%) n = 00 < ) n =00

|

n

=2.1n2=1n2

2

. . L . . nen+DY _ g WAl | .0 _
converges to l,smcenlgmOO an —nleoc v/2n+1 —nleoc exp (711 ) —nleOC exp< : ) =e' =1

. . . . I .
diverges, since lim a, = lim @ + Y= lim (n+1) =00
n — oo n — oo n: n — oo

. converges to 0, since lim_a, = lim ﬂ = 0 by Theorem 5
n— oo n— oo n!

) D (4 D06
(2n73)1(2n71) = 2&1)3_25_)1 = S = [<§> _Q + (5) - (7) +..F 2217)3 _2g>1] = (3) _2g7)1
1
= lim_ s, = lim [ézgi)] :%
=t = s=(F+H)+F D+ +(FH) =3+ = i s
= lim (-1+-2;)=-1
n— oo n+1

(3n71)9(3n+2) = 3n371 - 3n12 = S = (%_ %) + (%_ %) + (% - %) +..F (3n371 - 3n3+2)
:%73113ﬁ:>n1i%moosnznli>m (77 :

oo
-8 _ =2 2 (=2, 2 -2, 2 -2, 2 -2 2
@ y@ntD -3 Tl 7 ST (T+E)+(T+ﬁ)+(ﬁ+ﬁ)+'“ +(4n—3+4n+1)
=_2 2 i = 1l _2 2\ = _2
- 9 + 4n+1 = nleoo S = n1l>moo ( 9 + 4n+l) - 9

o0 o0
> e ™ =3 X, aconvergent geometric series withr = L anda =1 = the sumis 1 1(1> ==
n=0 n=0 -3

Zl (-2 = ZO (=2) (5})" a convergent geometric series withr = — { anda = =2 = the sum is
n= n=|

(-3 _ 3

-(5) 5

diverges, a p-series with p = 1

o0 [ee]

> %5 =-5> %, diverges since it is a nonzero multiple of the divergent harmonic series

n=1 n=1

Since f(x) = ﬁ = f'x) = — 2)3;/,2 <0 = f(x)is decreasing = a,;; < a,, and n imoo a, = nlew # = 0, the

(e ¢]

635

n 0
series % converges by the Alternating Series Test. Since ) ﬁ diverges, the given series converges conditionally.
1 n=1

n=

1

converges absolutely by the Direct Comparison Test since ﬁ < 5 forn 1, which is the nth term of a convergent

p-series

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.



636  Chapter 10 Infinite Sequences and Series

29. The given series does not converge absolutely by the Direct Comparison Test since i (nl > nlﬁ , which is
1 . .
e < 0 = f(x) is decreasing

0, the given series converges conditionally by the Alternating

the nth term of a divergent series. Since f(x) = = f'(x) =

1
In(x+1)

. _ . 1 _
= an1 < ap, andnleDO a, = nlew rCE

Series Test.

| T 1 _ 170 _ : 1 1y _ 1 :
30. j; e X = im | e dx = lim  [—(n )7, = | Tim (% — 5) = 3 = the series
converges absolutely by the Integral Test
31. converges absolutely by the Direct Comparison Test since 21 < & — 1 the nth term of a convergent p-series
n n n

32. diverges by the Direct Comparison Test fore”™ >n = In (e““) >Inn = n">Inn = Inn" > In(Inn)

Inn
In (In n)

= nlnn >In(lnn) = > % , the nth term of the divergent harmonic series

|

n— oo

1
33. lim ("(7"3') = ,/nleoo nz“—il = \ﬂ =1 = converges absolutely by the Limit Comparison Test

3=

34. Since f(x) = X = f/(x) = % <Owhenx 2 = an <a,forn 2and lim 3% =0, the

series converges by the Alternating Series Test. The series does not converge absolutely: By the Limit

3n?
nd 41

Comparison Test, lim Ol L im ngnfl = 3. Therefore the convergence is conditional.
35. converges absolutely by the Ratio Test since lim { (n“ﬁ)! . n‘il} = lim_ & + 12)2 =0<1

—1)" (n2 .
m M does not exist

36. diverges since lim a, = lim —-=—

. . . 3n+l n!| _ . 3 o

37. converges absolutely by the Ratio Test since nleDO [m - ﬁ] = nlew S1=0<1

. . N _ . n/ 2030 . é _
38. converges absolutely by the Root Test since lim V/a, = JiHm /5 = lim 2 =0<1

imi : ; ; <ﬁ> ; n(n+ Hn+2)
39. converges absolutely by the Limit Comparison Test since lim —-—"~—~ = lim ————~=1
n— oo < 1 ) n— oo n
n(n + 1)(n+2)

1
.. . . . a2 . 2 (2 —
40. converges absolutely by the Limit Comparison Test since _lim ﬂ = lim Lﬂ =1
n— oo ( 1 ) n— oo n
nvn2 -1
: Upt] . (X+4)n+] n3" |X+4| : n ‘X+4|
41n1l)moo u—:<1:>nll)moo mrDIT &4 Ap <1l = 3 nll>moo(n+l)<1:> 3 <1

n3" n

= [x+4/<3 = 3<x4+4<3 = —T<x<-liatx=—Twehave } &2 = S"CV the alternating
n=1 n=1

o0 o0
harmonic series, which converges conditionally; at x = —1 we have) % =3 % , the divergent harmonic series
n=1

n=1
(a) the radius is 3; the interval of convergence is —7 < x < —1
(b) the interval of absolute convergence is —7 < x < —1
(c) the series converges conditionally at x = —7
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42.

43.

44.

45.

46.

47.

Chapter 10 Practice Exercises 637

U (=17 2n—1)! B .
L St <1l = x-1)72 L lim —(2n)(2n+l) = 0 < 1, which holds for all x

lim
n— oo

<l = leoo @nrD! T =1

(a) the radlus is 00; the series converges for all x
(b) the series converges absolutely for all x
(c) there are no values for which the series converges conditionally

H Un 1 H Bx— D! n’
nleOO ol ] = leOO m—l)z‘m <1:>‘3X—1| ll)moo (n+1)2<1$\3x—1|<1

_1\y—l/_1\n 2n—1
= —1<3x—-1<1=0<3x<2 = O<x<%;atx:0wehave2( 1)n2( D Z( L

n=1

# , a nonzero constant multiple of a convergent p-series, which is absolutely convergent; at x = % we

Il
|
8

=1
I

0 _1\yn—1 n 0 _1\yn—1 .
have ) (l)n# =3 % , which converges absolutely

n=1 n=1

(a) the radius is % ; the interval of convergence is 0 < x < %
(b) the interval of absolute convergence is 0 < x < %

(c) there are no values for which the series converges conditionally

: Un+1 : n+2 _(2)(+1)"Jrl _2n41 | [2x + 1] . n+2 _2n+41
nll)moo <1l = leOO n+3 o0+l ntl (2x+1)" <1l = s n1l>m00 13 1 <1

= —'“;“(1)<1 S xF1<2 = 2<% +1<2 = 3<2x<1 = —3<x<liax=—3wehave
- " = . . . .

1 2nn++ll . (_2%) Z ;) Ernl“) which diverges by the nth-Term Test for Divergence since
n= n=1

o0 n o0

im (& frl]) =4 #0;atx = § we have Z:I on frl] - 5 = >_aL which diverges by the nth-Term Test

n=1
(a) the radius is 1; the interval of convergence is — 3 < x < 3
(b) the interval of absolute convergence is — % <x< %

(c) there are no values for which the series converges conditionally

n+1

Un+1 X .
(n+ ptl - xn

)|<1 = @nli)moo (n-}-l)<1

<1 = I tim [ (7)" (7

nleoo n+1

<1l = li’m

o0
= IZ—‘ -0 < 1, which holds for all x

(a) the radius is co; the series converges for all x

(b) the series converges absolutely for all x

(c) there are no values for which the series converges conditionally

xn+l

n
vn+1 T X

Z ( \/l—) which converges by the Alternating Series Test; when x = 1 we have Z \}— , a divergent p-series

n=1

Un+|

<1l = lim_ LHim <1 = |x| < 1; when x = —1 we have

hm n+1

(a) the radius is 1; the interval of convergenceis —1 < x < 1
(b) the interval of absolute convergence is —1 < x < 1

(c) the series converges conditionally at x = —1
. Upil . (n + 2)x2+1 x2 . n+2 .
Jim [ <1 = lim = (n+1)x2nl‘<1:>?n1i>moo(n+1)<1:>_\/§<x<\/§’
(o]
the series Z \[ and “\%1 , obtained with x = =+ \/§ both diverge
n=1

(a) the radius is \/5; the interval of convergence is —\/5 <x< \/5

(b) the interval of absolute convergence is —\/5 <x < \/g
(c) there are no values for which the series converges conditionally
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48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Chapter 10 Infinite Sequences and Series

G=Dx3  onyl
2n+3 (x — 1)+l

l-1n+1

lim_ Dl = x-DXDH<1

. 2 : 2n+
<1l = lim_ <l = x-=1)7 lm_ (22+

< n 2n+1
> x-1)P<l = x—-1l<l = -1<x-1<1 = 0<X<2;atx:0wehavez%
n=1

) (—1

Z T = > CD" which converges conditionally by the Alternating Series Test and the fact
1

2n+1

n=1 n=

. ) —1)0(1)2n+1 >
that Z s diverges; at x = 2 we have Z CUT Z which also converges conditionally
- - =l

2n+1 2n+1’

(a) the radius is 1; the interval of convergence is 0 < x < 2
(b) the interval of absolute convergence is 0 < x < 2
(c) the series converges conditionally at x = 0 and x = 2

2
en+1 _e—n—1

(e" —2e’" )

csch (n 4 1)x™+!
csch (n)x"

un+l

<1

lim
n— oo

<1 = lim
n— oo

<1 = [x| lim
n— oo

% <1l = ‘eﬁ <1 = —e < x <e;theseries > ( & ¢)" csch n, obtained with x = +e,

n=1

= |x| lim
n— oo

both diverge since lim (£ e)* cschn # 0
n — oo
(a) the radius is e; the interval of convergence is —e < X < e

(b) the interval of absolute convergence is —e < X < e
(c) there are no values for which the series converges conditionally

. Ups x™! coth (n+ 1) . l4e 22 |-
o1, | e | <1 = Xl Im o e es| <1 = x| <

<1 = lim
n — 0o

= —1 < x < 1; the series >_( & 1)" coth n, obtained with x = = 1, both diverge since Jim (= 1)" cothn # 0

n=1
(a) the radius is 1; the interval of convergence is —1 < x < 1
(b) the interval of absolute convergence is —1 < x < 1
(c) there are no values for which the series converges conditionally

The given series has the form 1 —x +x2 — x3 4+ ... + (—x)"+... = ﬁ,wherex = 1 ; the sum is ﬁ =3
The given series has the form x — "5) + "; — e (=D! ";" + ... =In(1 + x), where x = % ; the sum is

In () ~ 0.510825624

The given series has the form x — "4? + ’% — ... (=D (2n2f11)v + ... = sin x, where x = 7; the sum s sin 7 = 0

2n
- — (=D én)! + ... = cos x, where x = §; the sumis cos 3 = ;5

>

The given series has the form 1 — 57 +

E=

ni!' + ... = ¢e*, where X = In 2; the sum is e =2

The given series has the form 1 + x + 3; X 3 b+

x3 5 x2n—1

The given series has the form x — T+ Xg — ...+ (=D o . = tan~! x, where x = % ; the sum is

! (J5) = %

Consider =5, 2 as the sum of a convergent geometric series witha =1 andr = 2x = ﬁ

=14+2x)+2x)?+2x)3> +... = Z 2x)" = Z 2°x" where 2x] < 1 = |x| < %

n=0 n=0
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58. Consider ;= as the sum of a convergent geometric series witha = landr = —x* = 15 = = (17}(3)
2 3 =
=1+ (x> +(=x3)" + (=3 +... =3 (=D xM where |-x*| <1 = |} <1=|x|<1
n=0
(=12t 241 . . O (=12t © (—1yrg2ntig201
59. sinx = Z GnyDr 7 SIMTX = Z; Cnt )l z% Cnt D!
n=| n=|

2n+1
< -1 (%)

n 2n+]
60. sinx = Z ((21n)+l)‘ = sin ¥ =3

o ( 1)n22n+l 2n+1
@n+1)! Z 32+ (2n + 1)!

1)nx!0n/3
(2n)!

1 S e 5/3) — 5~ D) S -
61. cosx =) “55— = cos (P) =% FT 2%
=

n=0 n=0

jee] — A n (e 0]

_ (=D ) _ ( \ﬁ) _ (=1"xon

62. cosx = 2% o = COS(%) =2 = Z% 57 (2n)!
o=

63. CX:Z X—: = e(”x/2>zz ( ‘) :Z 7T"X.

n=0 n=0 n=0

64. e* = i ﬁ—: = e*xz — io: (7x'2>n — i (=D"x™

n!

65 f(X) — /3 +X2 — (3 +X2)1/2 = f/(X) — X(3 +X2)*1/2 = f//(X) — _X2 (3 + XZ)*S/Q + (3 + X2)*1/2

= 1700 =3 3 4+x2) P =3 B34+ x) - =2, f(—-) = -1, () =—141=3

8 b
f///( ]) _ _ 3 % — % = 34+ X2 =2— (’(241'1) 4 3(2::'21!)2 + 9(;4—31) + .
66. fx) =L =(1-x" = R =>1-x"2 = &) =201-x" =x)=6(1 -4 f2) = —1,f'2) = 1,
f/(2) = —2,f"(2) =6 = L = —1+(x-2) —(x—22+(x—2)° —
67. f(x) = x+l S DT = PR = —x+ D = £ =20+ D)7 = £(x) = —6(x + )7k £3) = 1,

PO =-F. '@O=3.1"Q=30 = H=i - F G-+ FHE-3—F&x-3"+
68. f=L=x" = fx)=—x? = f'®)=2x7 = ) =—6x"% fa)=1.fa)=—%, () =
f///(a):,—_félzi_%(x_a)_ka}(x ) al,l(x—a)3+

a X

1/2 1/2 6 9 12 4 7 10 13 1/2
69. j; exp(—xS)dx:j; (1—x3+’2‘—!—%+’2—,+...>dx:[X—%—i—%—l’(‘)_m—f-ﬁ—...}o
~ 1 1 1 1 1
N5~ g9ig T a7 2003 T amaal  am 16 5~ 0.484917143
1 1 5 7 1
70. ‘/;xsin(x?’)dx:j;x(x?’—’;—?—l—%—%—i—%—i—...)dx:ﬁ (x4—"3—1!0+%—x7—2!2+"9—27—...)dx
5 11 17 23 29 1
= {X? — T s T ona T - } o~ 0.185330149
172 tan~' x 172 x2 x* x8 x5 x10 X3 x° x’ x? X! 1/2
71»f| fdx:fl (1*§+§*7+3*T+...)dxz|:X*§+E*@+8j*m+...:|
1

~ 1 1 1 1 1 1 1 1 1 1
i~ orptyr T ry ter ~ipan T3 T ar T par T e Toame B 0.4872223583
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73.

74.

75.

76.

77.

78.

79.

80.

Chapter 10 Infinite Sequences and Series
6 fanlx Ve © XX VO e 152 0 1.9/2 1 13/2
\/; dX: 0 W(X—?+?—7+)d)§:ﬁ (X —§X +§X —7X +)dX

— [2x3/2 2 47/2 4 2 411/2 _ 2 152 Vet _ (2 2 4 2 2 ~

= [5x X+ X 105 X +"']o = (5% — srg T 5567 — To5gw T ---) ~ 0.0013020379
_B8 0 2t

[ Tsns _ i 7<x S ) i 7(1 S ) .

X — 0 32X71_x—>0 <2X+22x2+23x3+ )_X—>0 (2+&+23x2+ )_2
2! 3! 2! 3!

2 3 2 3 3 5
et g (1+9+g—,+§—!+...)7(179+g—§—!+.‘.)729_1. 2(5+%+.)
gy -sme gl 9—(9—@+@— ) o (@—@+ )

TS T e
2+ %+
= lim 7 =2
" Gt
2 4 4 6
12—2+2<1—‘—+‘——...> 2(‘— S+
2 24 a7 6
lim (5= — 1) = lim 572H2estl — [y A = lim
t—>0(2’2005t ¢) t—0 W=eosh 0 se (o145 -Gk ) =0 (¢4
12
= lim 2 S!+'“> =1
t—0 (7%‘4, ) 12
(%)—coqh (1*£+2¢|*---)—(*%+1ﬁ7 )
lim = lim
h—0 h? =0 h®
B2 h2 ot pd 6 b
TontTs T wmte
h—0 h2 hoo0 21 31 ! | [l | - 3
4
) 1—(1—22+Lf (z27%+ )
lim —L=cos’z  — [jy — - = lim :
1 1_ S Z‘Z L3 L'3 Zs L2 L'3 Z-1
z— 0 In(d-2z)+sinz ;7 (—z—7—§—‘..)+(z—§+j—..‘) z—0 (—7—%—7—._‘)
2
1—Z 4.
. 3
= Jim —4—;—72—‘:*2
M 570
lim —Y = lim . N = lim ¥
y—0 cosy—coshy ' (1—¥7‘+§7§+ ..)—<1+§+§+y§+...> y—0 <72£7%7...)

= lim —L
yﬁO(qf%fm)

603, 6x°
(3X -t

X3

lim (8o 4 o = lim
XHO(XB +XZ+S) x—0

= L+ 3=0ands—3=0=r=-3ands =3

The approximation sin x ~ Gi"xz is better than sin x ~ x. y
y=sinz—z
\ )
\\
.

K N A ps

-2
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85.

86.

87.

88.

89.
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lim 2-5-8---(3n — 1)(3n + 2)x"*! N 2-4-6---(2n)
n — oo 2-4-6---(2n)(2n +2) 2-5-8---(3n — 1)x"

= the radius of convergence is %

<1 = |x| lim_ 22 <1 = |x] <3

lim  [337-@neDenida=rt | 4914 (Sn—1)
n = 00 4:9-14---(5n—1)(5n+4) 3572+ Dx"
5

= the radius of convergence is 3

<1 = x| lim [B2E][<1 = x|<3

Shl-%)=>[In(1+3)+n(1-1)]=>[Intk+1) —Ink+Ink—1)—InK]

=2 k=2
=[In3—-In2+Inl1-In2]+In4—-In3+In2—-In3]+In5—In4+In3—-In4/+[In6—-1n5+1n4—In5]
+...4+[Inm+1)—Inn+Inm—1)—Inn=[nl—In2]+ [In(n+ 1) —Inn] after cancellation

:>Z ( —)7ln(“+l) = i ln(l—%): lim ln(“zﬂ):ln%isthesum
= =2

2n

k=2 k=2
1 1 _ 11 1 1 1 _1(3 1 1 1 |3nm+D—-2m+DH—2n| _ 3n’-—n-2
+(n—17n+1)]—5(1+§***n+1)—§(§*6*n+1) 5{ 2n(n+1) }— 4n(n+ 1)
o
T 1(3 1 1 _3
:>k¥2k21 ngmmi(i_a_n—&-l)iz
. 1-4-7---(3n — 2)(3n+1)x>+3 (3n)! 3 (3n+1)
(@ ,lim Ga o) ‘e | < = LI e e

= [x}|-0 <1 = the radius of convergence is co

. X 1-47-Bn=2) _3n dy o~ 1-4-7---(Gn—2) x3n-1
b)) y=1+ Zl Gl X T & T Zl G- 1)
n= n=

Py _ S 14T Gn=2) e 147Gn=5) 302
= =2 Gn-2)! " X+Z Gn=3)! "

&)

(@) £~ = 1_"—2 =X+ + X2+ (x4 ... =x2 =3+ x = x4+ ... = (—=1)"x" which

X (=x) n=2

+

converges absolutely for x| < 1

b) x=1= > (=D"x"=>_ (—1)" which diverges

n=2 n=2

[ee) oo
Yes, the series) | a,b, converges as we now show. Since ) a, converges it follows thata, — 0 = a, < 1

n=1 n=1

forn > some index N = a,b, < b, forn >N = > a,b, converges by the Direct Comparison Test with > b,

n=1 n=1

No, the series Y a,b, might diverge (as it would if a, and b, both equaled n) or it might converge (as it would if

n=1

a, and b, both equaled %).

o0 o0
> (Xnt1 — Xp) = nleOO ];(Xk+] —Xg) = nli}ng@ Xpe1 — X1) = 11ll)mOO (Xpe1) — X1 = both the series and

sequence must either converge or diverge.
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.. . . . ( 1 inan) _ . 1 _ e
90. It converges by the Limit Comparison Test since | leOO o T leDo o = | because > a, converges

n=1

and so a, — 0.

91.;3;":a1+“2—2+%+1—4+... a+(Ha+E+Da+(E+i+3+3)as
+(3+5+ i+ +ig)ae+... 3(+ay+as+ag+...) whichisadivergent series
92. a,=-forn 2 = a a3 a andlnz—klﬂ—l—1118 o= prt izt gt

diverges by the Integral Test.

nln

=L (l+5+3+...) whichdivergessothatl—i—z

CHAPTER 10 ADDITIONAL AND ADVANCED EXERCISES

[o¢]
1. converges since Gno 2%(2“ 2 < & 712)3,2 and ) Gn 712)3 5 converges by the Limit Comparison Test:
n=1

i, ) i
noo(m) n— oo

(272)" = 30

. o0 1N2 dx 1 (tan~' x)° b T (tan"1b)* 73
2. converges by the Integral Test: fl (tan~! x) 4T = bli>moo [T = bleOO = 15
(2 _ )1
—\24 7 192) T 1%
. . . _ . _ n _ . _ n 1— e—2n _ n
3. diverges by the nth-Term Test since nleoo a, = nll)mOO (—D" tanhn = bll>moo -0 (1 +e’2“> = nll’mOO -0
does not exist
4. converges by the Direct Comparison Test: n! < n" = In(n!) < nln(n) = 11?1((?1? <n
= log,(n!)) <n = bgﬂ%') < % , which is the nth-term of a convergent p-series
; : B _12_ _ 12 _ (23 (12
5. converges by the Direct Comparison Test: a1 = 1 = qyarap - 2 = 55 = muae > = (13) (53)

_ 1 (34 (23) (12) _ 12 S 12
= Gear 4= (5 6) (4 5) (3_4) = @oGE = 1+ nz_:l G D@ 3@ fepresents the
given series and 12

aTDa T < n1 , which is the nth-term of a convergent p-series

6. converges by the Ratio Test: nimw el — , lim =0<1

Ry - 1)(n+ D

7. diverges by the nth-Term Test since ifa, — Lasn — oo,thenL =1~ = L +L—-1=0 = L= “1£4/5

I1+L

8. Split the given series into Z 32,,“ and Z i the first subseries is a convergent geometric series and the

n=1 n=1
second converges by the Root Test: nIme v % = nlem \[‘/— = 17 = 5 <1
9. f(x)=cosxwitha=7% = f(3) =05,f(5) = f" (3) =05, (3) = i 9 (5) =0.5;
2 - 3
cosx =4 = (=) - (x-5)"+ f(x 5+
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. f(x) =sinx witha =27 = fQ2n) =0,{'Qnr) =1,f"2r) =0, f"Q2n) = -1, f¥Q2r) =0, fOQ2r) =1,
FOQ2m) =0, {D(2m) = —1;sin x = (x — 2m) — OS2 4 G207 o2l

ce =1 x+ 5+ 4 witha=0

Cfx)=Inxwitha=1 = f(1) =0, (1) = 1, £'(1) = —1f"(1) = 2, f9(1) = —6;

2 1 LY
Inx=@x—1)-8 L peb =Dy

Cf(x) = cos x witha = 227 = £(227) = 1, £/(227) = 0, £"(227) = —1, £"(227) = 0, f9(22m) = 1,
fOQ227) =0, fO227m) = —1;cos x = 1 — 3 (x — 22m)? + 3; (x — 22m)* — & (x — 22m)° + ...

) =tan'xwitha=1 = f(1)=12,f() =1, f"()=—1,(1)=1;

-1y _ 7 x-1 (x—1)? (x—1)?
tan” X=7+"—F5——-——F+—F+...

™ & lim ¢, =1Inb+ lim 2GS+
n-— oo n

n—oo

. Yes, the sequence converges: ¢, = (a" + b“)l/n = c,=Db ((%)n + l)1

_ ()" (}) _ Oln () _ . . _ nb _
_lnb+nhﬁnol0 bﬁ)"+li =Inb+ 0+f —lnbsmceO<a<b.Thus,nleOO ch=¢e"?=hb.
N EIE SRS g
n=1 n=1 n=1
0 o) o 2 iz 7
SN VRIS QT R P N ) B
n=0 n=0 n=0 1- () 1= (1) 1- (1)

= 200 4 30 4 7 _ 9994237 _ 412
=1+ 555 + 500 T 595 = 099~ = 333

1

= Kt dx dx . dx " dx " odx
' Sn:kz%)ﬁ 1+ x2 = S = 01+x2+.f1 l+x2—’_"'—’_j;11+x2 = S = 0 1+x2

—y

= lim s, = lim (tan"'n—tan"'0) =7
n— oo n— oo

(n+Dx™' @+ DEx+ D
(n+2)(2x + 1)1 nxn

x . (+1)?

=, lim 2x+1 nn+2)

n— oo

= lim

n— oo

lim

:|2x:'1| <1

Un+1
u,

= x| <[2x+1];if x>0, x| <2x+ 1] = x<2x+1 = x> -1if -1 <x<0,[x| <[2x+ 1]
= —x<2x+1 = 3x>-1= x> —1;ifx< =1, x| <|2x+ 1] = —x<-2x—1 = x < —1. Therefore,

the series converges absolutely for x < —1 and x > — % .

. (a) No, the limit does not appear to depend on the value of the constant a
(b) Yes, the limit depends on the value of b

cos (3) 1 a — g sin (§) +cos (§)
_ (1 - ) N G . Jg&)( )
(c) s 1 = Ins T = lim Ins
n (%) n =00 (— n%)
= lim Lj‘f() =9=l=—1= lim_s=e'~03678794412; similarly,
n—oo 1— Tn n— oo
- cos () \" _ .~1/b
Jim (1= <) = ey
x> : . 1 +sina, \1 l/n . 1+sin a, I+sin (“lggc a,,) 1+sin 0
: H; a, converges = _lim a, = 0; lim_ [(T) } = lim (Hsna) — : = L
= % = the series converges by the nth-Root Test
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21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
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. up . bn+l Xn+1 Inn o 1
o im +‘<1:> Jlim et bnx"<1:>|bx\<l$——<x<— 5=b= 42
A polynomial has only a finite number of nonzero terms in its Taylor series, but the functions sin x, In x and

e* have infinitely many nonzero terms in their Taylor expansions.

33 3
. sin (ax) — sin x— . axX—F- ) = ([ X=Fr ) =X _ 3 5
lim sm(dx)xssmx * — lim ( ) ( ) — lim |& 22 _ aj + L' _(a _ % %2 + ..

X — 0 X — 0 X3 X — 0 X 3! 3! 5! 5
. . . . . H —al _ 3
is finiteifa—2 =0 = a=2; lim st&=smx=x_ _ 2 4 1 _—_17
x—0 X
4
L (-5 1 i
lim €S8-b 1 iy ' — 1 = lim (* @y e ):—1
X — 0 2x2 X — 2x2 X —0 2x?2 4+ 48

= b=1landa= £2

Uni 1 n?

(a) L:M=1+%+é = C=2>1land ) ; converges
n=1

(b) =2l —1414 8 = C=1<1land} I diverges

Up+1 n =l
() 0, ="
6 3 T
uw _ 2@2n+l) _ 4nl4on a 5 3 (4n2—dn+1) L
o T noIF T a1 = LT oyt amm gy = L+ 57 + " after long division
= C= % > 1 and [f(n)| = 1 f’j{nH = (4_ f+ %) <5 = Z: u,, converges by Raabe's Test
oo oo o0
@ Y a,=L = E = = 5" a2 converges by the Direct Comparison Test
n=1 n=1 n=1
(b) converges by the Limit Comparison Test: _lim @ = lim —— =1 since i a, converges and
g y p ‘n=00 a,  n—oo l—a, = n g
therefore _lim a, =0
X — 0
a2 3
IfO<a, <lthen|ln(l —ay)|=—In(l—a)=a,+3+3+... <ap+ai+al+.. =,

a positive term of a convergent series, by the Limit Comparison Test and Exercise 27b

(l—x)*lzl—l—z x" where x| < 1 = (l_lx)o = (l—x) L= z:]nx“ 1andwhenx—§wehave
_ 1 1 1\n-1

4=142H) +3(0)°+4()’+. 40 (H)" 4.

(a) EX“H = % = ;(n—i—l)x“: (zf‘:x’;o = Z:n(n—i-l)xn = =7 2X)3 = Zn(n DHx™ = (12’;)3

n=1

) . 2 )
- Zl Ea (1-1) = o2 x> 1
n= ~x

00 1/3
b) x=3 D x:% S B3 fx—1=0 = x:1+(1+@) +(1—

C

XN

)1/3

@ = a () =0 x++x3 ) =14+ 2x+3 +45 + . =3 nx!

(b) from part (a) we have in(%)“‘1 (5) = (%) [lf@]z =6
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(a)

(b)

(©

(a)
(b)

()

(a)
(b)
(©)

(d)

Chapter 10 Additional and Advanced Exercises

from part (a) we havegnp Iqg= T = o= é
o=y 2= s = Tand B0 = Som= Y k= K= () o =2
2

N

= (-

by Exercise 31(a)

oo o0 _ oo k 5 o0 [e 0] _ o0
Sho=Y =i (=) [y s 1adEw =3 k= kG =g S k()
k=1 k=1 k=1 =1 k=1 k=1

Y=2 =2 (k) = lim (1- ) = land G = Z}PFE}(@)

k=1 k=1 k=1 k— o0

Coe—klo (l _ e—nkln)
1—eXo

n = Coeikt“ + Coﬁizkt“ + ...+ Coeinkt') =

_ : _ C067k10 _ Co
= R= n 1_1)moo R, = l—o®o — oFo_]

o= 0ee o Ry = el & 0.36787944 and Ryg = 1= ~ 0.58195028;

—e 1

R
R
R = L ~0.58197671; R — Ryg ~ 0.00002643 = 281 < 0.0001
R

_et(-e™ R _ 1

—.In

L ) 2(61 )~47541659R >7¢ le:e_l >()(e.11_1)

= l-eV0sl o el o 2 cin(l) = &>-In(3) = n>693 = n=7

D=

C
R= g = R =R+Cy=Cy = tho:(cj—: = to=%ln<g—:)
t0—005 Ine = 20 hrs

Give an initial dose that produces a concentration of 2 mg/ml followed every t) = 55 In (5% ) &~ 69.31 hrs

by a dose that raises the concentration by 1.5 mg/ml
th =55 In (&) =5In (L) ~ 6hrs
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